

Screening and prevention of preeclampsia

Liona Poon

MBBS MRCOG MD(Res) Cert RCOG (Maternal and Fetal Med)
Associate Professor
The Chinese University of Hong Kong

Adopted in PWH

High risk factors

- Hypertensive disease in a previous pregnancy
- Chronic renal disease
- Chronic hypertension
- Diabetes mellitus
- Autoimmune disease such as SLE or APS

Moderate risk factors

- First pregnancy
- Age > 40 years
- Body mass index ≥ 35 kg/m²
- Inter-pregnancy interval > 10 years
- Family history of preeclampsia

ACOG 2013: High-risk in need of aspirin

- Preeclampsia in ≥2 previous pregnancies
- Preeclampsia <34w in previous pregnancy

100

90

80

70

60

50

40

30

20

10

Detection

Maternal characteristics

Wright et al. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. AJOG 2015;213:62

Mean arterial pressure

• Device: Validated automated devices, calibrated at regular intervals.

• Method: Women rested for 5 minutes, arms

supported at the level of the heart.

• Cuff size: Small (<22 cm), normal (22-32 cm) or

large (33-42 cm), depending on the mid-

arm circumference.

Both arms: Take average of two measurements

in each arm.

MAP (MoM)

Uterine artery PI

1st trimester – transabdominal ultrasound

Identify the uterine arteries

- -Obtain a sagittal section of the cervix and use colour Doppler
- -Fixing the probe in the midline then tilt the transducer from side to side to identify the uterine arteries at the level of the internal cervical os

Sampling gate: 2 mm to cover the whole vessel

Angle of insonation: less than 30°

Peak systolic velocity: more than 60 cm/s

Mean PI: average PI (left + right / 2)

UTPI (MoM)

Plasencia et al. UOG 2007

Angiogenic factors

PLGF (MoM)

1st trimester combined test

Maternal risk factors

- Age: every 10 years above 30 y
- Weight: every 10 kg above 70 kg
- Racial origin Afro-Caribbean South Asian
- Obstetric history First pregnancy Previous preeclampsia
- Family history of preeclampsia
- Conception by IVF
- Chronic hypertensionDiabetes mellitus
- Autoimmune : SLE / APS

O' Gorman et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks. Am J Obstet Gynecol 2016; 214: 103

History, MAP, UT PI, PLGF

ASPRE

	High risk factors Moderate-risk facto	
NICE +ve / FMF +ve	8.7 (6.8-10.9)	4.8 (3.3-6.6)
NICE +ve / FMF -ve	0.65 (0.2-1.7)	0.42 (0.2-0.9)
RR (95% CI)	0.08 (0.03-0.2)	0.09 (0.04-0.2)

34,573 singleton pregnancies at 11-13 w: preterm-PE 239 (0.7%)

In ACOG or NICE +ve women that are FMF -ve the risk of preterm-PE is reduced to within or below background levels

ULTRASOUND

in Obstetrics & Gynecology

Poon et al. ASPRE trial: incidence of preterm preeclampsia in patients fulfilling ACOG and NICE criteria according to risk by the FMF algorithm. Ultrasound Obstet Gynecol. 2018; doi: 10.1002/uog.19019.

Prevention of PE

Low-dose aspirin: background

Antiplatelet agents for prevention of pre-eclampsia: a metaanalysis of individual patient data

Askie et al. Lancet 2007; 369: 1791

•Meta-analysis of individual patient data from 32,217 women in 31 RCTs (24 ASA RCTs)

•RR for PE: 0.90 (95% CI 0.84-0.97)

•RR for birth <34 w: 0.90 (95% CI 0.83-0.98)

15 different definitions of PE

Prevention of PE

Low-dose aspirin: background

Study design

DOSE: 150 mg / day Aspirin resistance: 30% at 81mg and 5% at 160 mg

Caron et al: J Obstet Gynaecol Can 2009;31:1022-7

START: 11-13 weeks

FINISH: 36 weeks Avoid potential hemorrhage for neonate

TIME: Bed time RCT aspirin 100 mg vs placebo morning, afternoon, night

Aspirin at night: lower incidence of PE, FGR, PTB or IUD

Ayala DE, Ucieda R, Hermida RC: Chronobiol Int 2013; 30:260-279

OUTCOME: Preterm PE

STUDY POPULATION: High-risk group defined by FMF algorithm

Prevention of PE

Aspirin: platelet aggregation

<u>Aim</u>

To compare the effects of different doses of aspirin on platelet aggregation and PGI₂ production by vessel wall after ischaemia.

Methods

- •25 young healthy volunteers
- •Subjects were allotted to the various dosage groups of aspirin (2, 2.5, 3.5, 5, 8 and 10 mg/Kg).
- PGI₂ production and platelet aggregation were investigated before and after aspirin administration.

Results

- A dose of 2.5 mg/Kg reduced platelet aggregation by 25-35%.
- •The inhibition of platelet aggregation was almost at maximum 2h after administration of 3.5 mg/Kg of aspirin. Further increase in the dose (5, 8 and 10 mg/Kg) only provoked a slight increase in inhibition, which was not proportional to the increase in dose.
- •PGI₂ production induced by ischaemia was affected by aspirin only at doses higher than 2.5mg/kg.

Average weight 50 Kg = 175 mg/day

Screening, randomization, follow-up

253 Receiving aspirin

- 7 Hypersensitivity to aspirin
- 7 Peptic ulcer, bleeding disorders
- Participation in another drug trial
- Miscarriage before randomization
- 3 Termination before randomization

The NEW ENGLAND
JOURNAL of MEDICINE

Rolnik DL, Wright D, Poon L, et al. Aspirin versus placebo in pregnancies at high risk of preterm preeclampsia. N Engl J Med 2017;377:613-22.

Results: effect on rate of PE

Rolnik DL, Wright D, Poon L, et al. Aspirin versus placebo in pregnancies at high risk of preterm preeclampsia. N Engl J Med 2017;377:613-22.

Results: effect of maternal factors

Poon et al. ASPRE trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol 2017; 217: 585.e1-585.e5.

Results: NICU length of stay

Outcome measure	Aspirin	Placebo	
Length of stay in NICU (d)			Diff in means (95% CI)
Study population: admission	N=49	N=54	
Mean (SD)	11.1 (23.4)	31.4 (53.0)	20.3 (7.0-38.6)
Study population: all cases in the trial	N=798	N=822	
Mean (SD)	0.66 (6.3)	2.06 (15.5)	1.40 (0.45-2.81)
No. of babies in NICU			OR (95% CI)
Study population: livebirths	N=777	N=794	
Number by GA at birth			
Any, n (%)	48 (6.2)	54 (6.8)	0.94 (0.63-1.42)
PE	2 (0.3)	18. (2.3)	0.11 (0.02-0.50)
No PE	46 (5.9)	36 (4.5)	1.38 (0.88-2.15)
<32w, n (%)	9 (1.2)	23 (2.9)	0.42 (0.19-0.93)
PE	0	7 (0.9)	0.00 (0.00-0.56)
No PE	9 (1.2)	16 (2.0)	0.59 (0.26-1.36)
Length of stay (d)	531	1696	

Results: potential cost saving

Conclusions

Aspirin:

- •at a dose of 150 mg per night from 12 to 36 weeks' gestation reduces the rate of PE <37 w by 62% and PE <34w by 82%
- does not reduce preterm PE in women with CH
- •in women without CH the risk of preterm PE is reduced by 95%
- •reduces the length of stay in NICU and associated cost by about 70% in pregnancies at high-risk of PE