REDUCTION OF RADIATION AND INTRAVENOUS CONTRAST DOSES IN TRIPHASIC CONTRAST CT ABDOMINAL AORTOGRAM

Dr. KM Mo

Department of Radiology

Pamela Youde Nethersole Eastern Hospital

Background

- Triphasic contrast computed tomography (CT) abdominal aortogram is currently the modality of choice for imaging surveillance of patients after endovascular aneurysm repair (EVAR).
- Published recommendations of interval scans at 1, 6 and
 12 months post-operation and at yearly interval thereafter.
- The prolonged nature of surveillance scans with triphasic protocols impose substantial radiation exposure and considerable contrast dose to the patients.

Background

- In order to reduce the radiation dose to patient in CT, the tube voltage could be decrease.
- The volume of iodine contrast can be reduced as greater attenuation of iodine at low tube voltage.
- Post EVAR patients usually have multiple risk factors (e.g. DM, HT) for renal impairment or contrast induced nephropathy.

Background

- Combination of low-contrast low-kV imaging technique in contrast CT aortogram.
- Low-voltage technique CT would increase image noise.
- Audit review on the radiation and contrast doses reduction of CT abdominal aortogram and image quality.

A three-phase audit

- To evaluate the radiation doses of the triphasic contrast CT abdominal aortograms performed at my department.
- 1st April 2015 31st December 2015 inclusive (9-month period)
- 55 patients (49 male, 6 female)

- Scanning Protocol
 - Intravenous contrast dose: 80ml Omnipaque
 350mg/ml → 30ml saline flush
 - Tube voltage: 120kV
- Data Collection and Analysis
 - Patient demographics
 - Radiation dose

Phase 1 - Result

- Contrast dose
 - 80ml Omnipaque 350
- Radiation dose
 - 2102.5mGycm

- To evaluate the *radiation dose* and *diagnostic quality* of contrast CT abdominal aortogram after implementation of the low-contrast low-kV protocol.
- 1st March 2016 30th November 2016 inclusive (9-month period)

Scanning Protocol

- IV contrast dose: 60ml Omnipaque 350mg/ml → 30ml saline flush
- Tube voltage: 100kV

Data Collection and Analysis

- Patient demographics
- Radiation doses
- Image quality
 - Quantitative and Qualitative assessment

Results

Contrast dose

All patients received a <u>reduced IV contrast medium</u>
 (Omnipaque 350mg/ml) from 80ml to 60ml (<u>reduction</u> of 25%)

Radiation dose

	Phase 1 (120kV)	Phase 2 (100kV)
Mean DLP	2102.5mGycm	1866.3mGycm

Phase 1 CT images

Phase 2 CT images

Phase 1 CT image

Phase 2 CT image

Results

Image Quality

- No statistically significant differences:
 - 1. Quantitative parameters
 - 2. Visual assessment
- Diagnostic image quality was maintained.

Phase 2 – Discussion

- After introduction of the new low-contrast low-kV protocol,
 - both contrast and radiation doses in the triphasic contrast CT abdominal aortogram examinations were reduced
 - 2. comparable diagnostic image quality maintained
- The radiation dose could further reduce,
 - Adjustment of the scanning protocol and re-audit

- To further reduce the radiation doses of triphasic contrast CT abdominal aortogram examinations through adjustment of technical scanning parameter while maintaining comparable and satisfactory diagnostic image quality.
- 1st January 2017 30th September 2017 inclusive (9-month period)

Scanning Protocol

- IV contrast dose: 60ml Omnipaque 350mg/ml → 30ml saline flush
- Triphasic scans: pre-contrast, arterial and delayed (2-minute after contrast injection)
- Tube voltage: 100kV
- Tube current:
 - Pre-contrast & arterial: Low-dose protocol AEC (Sure Exp 3D® Low Dose)
 - Delayed: Standard protocol AEC (Sure Exp 3D® Standard)

Phase 3 – Results

Radiation dose

	Phase 2	Phase 3
Mean DLP	1866.3mGycm	1721.0mGycm

• The radiation dose is further reduced.

Phase 3 – Results

- Image Quality
 - Increase quantitative image noise
 - Arterial phase:
 30.5% (p=0.04);
 delayed phase:
 14.6% (p=0.48)
 - Other quantitative and qualitative parameters of image quality: no statistically significant differences

	Phase 2	Phase 3	p- valu		
			е		
Quantitative Image Quality					
Attenuation (of aorta (HU)				
Arterial	398.9 ± 55.3	412.4 ± 91.0	0.19		
Delayed	138.8 ± 14.1	141.9 ± 26.0	0.73		
Attenuation gradient (HU)					
Arterial	11.3 ± 9.8	16.7 ±17.3	0.27		
Delayed	6.6 ± 5.8	6.8 ± 5.5	0.81		
CNR					
Arterial	27.2 ± 5.6	26.9 ± 10.6	0.87		
Delayed	6.4 ± 1.6	6.7 ± 3.2	0.72		
Image noise (HU)					
Arteriza	12.8 ± 2.2	16.7 ± 6.6	0.04		
Delayeo	12.3 ± 2.1	14.1 ± 3.7	0.04		
			8		
Qualitative Image Quality					
Image noise Arterial	1.1 ± 0.3	1.1 ± 0.4	1.00		
Delayed		1.1 ± 0.4 1.9 ± 0.3	1.00		
Image arteface		1.9 ± 0.3	1.00		
Arterial	1.9 ± 0.3	1.9 ± 0.2	0.40		
		1.9 ± 0.2 2.0 ± 0.2	0.40		
Delayed		2.0 ± 0.2	0.09		
	ostic quality 4.0 ± 0.4	10.02	0.00		
Arterial		4.0 ± 0.2	0.98		
Delayed	4.1 ± 0.5	3.9 ± 0.4	0.23		

Phase 3 Discussion

- A <u>downward trend of radiation</u> <u>doses</u> of triphasic contrast CT abdominal aortograms was demonstrated.
- There was an increase in objective measurement of image noise, but unlikely to be clinically significant
 - Minimal increase in absolute value (<5HU)
 - No statistically difference in visual assessment score for image noise

Phase 3 – Discussion

- Limitations:
 - Relatively small sample size → limiting the power of dose reduction assessment.
 - Increase in scan range during latter part of audit cycle in response to feedback from vascular surgeons.
 - Pre-contrast & arterial: diaphragm to mid-pelvis → to inguinal (include entire pelvis)
 - Delayed: endovascular stent
 - Likely both contributing to <u>underestimation of</u> <u>degree of radiation dose reduction</u>

Phase 3 – Recommendations

- Collect feedback from radiologists regarding the acceptance of image quality and diagnostic confidence with the current scanning protocol.
- Implementation of the low dose protocol (Sure Exp 3D® Low Dose) in pre-contrast and arterial phases for all contrast CT abdominal aortogram examinations performed in my department.
- Further effort should be made to reduce radiation doses
 - Further optimization of technical imaging parameters for patients with different body sizes
- Liaise with clinicians and encourage alternative non-ionising modalities (e.g. ultrasound) for where appropriate (e.g. stable disease).

THANK YOU FOR YOUR ATTENTION