Hip Pain During Walking and Cognitive Status
Early Post-operation
Predict Discharge
Destination in Men with
Hip Fracture:
A Prospective Study

Ms. Intonia CHOW Hoi Wan¹ Senior Physiotherapist Queen Elizabeth Hospital 7 May 2018

Chan ACM¹, Chan DWL¹, Yung BPK¹, Lee KB², Li WWY², Pang MYC³

¹Physiotherapy Department, Queen Elizabeth Hospital

²Department of Orthopaedics and Traumatology, Queen Elizabeth Hospital

³Department of Rehabilitation Sciences, The Hong Kong Polytechnic University

Background

Hip fracture is a well-known geriatric fracture that requires hospitalization

- International clinical guidelines
- Coordinated & multidisciplinary care approach
- Provide right care at the right time

(Scottish Intercollegiate Guidelines Network (SIGN) Clinical Guideline, 2009; Handoll et al., 2011)

Physiotherapists rehabilitate the patients achieving their maximum function and potential -> community re-integration

(SIGN Clinical Guideline, 2009; NICE Clinical Guideline, 2010)

Background

Successful surgery

Adequate rehabilitation

- ▶ Become dependent
- ▶ Unable to regain pre-fracture status
- Permanent disability
- ► Fail to return to original residential status (Cameron et al., 2010)

Predicting discharge destination
→ Better discharge planning

Results from Literature Review

16 Variables for predicting discharge destination in previous studies

Λ	Dog for along by although the
• Age	 Pre-fracture health status

- Gender
 Pre-fracture functional state
- Marital status
 Pre-fracture ADL state
- Place of fall
 Pre-fracture residency
- Type of fracture
 Availability of caregiver
- Type of surgery
 Length of hospital stay
- Time to surgeryCognition
- Post-operative complications
 Physiotherapy training

(Cree & Nade, 1999; Kagaya et al, 2005; Chiu, 2007; Hershkovitz et al, 2007; Al-Anl et al, 2008; Deakin et al, 2008; Hagino et al, 2011; Handoll et al, 2011; Moppett et al, 2012; Jackson et al, 2013; Nanjayan et al, 2014)

Knowledge Gap

- Age
- Health status
- Pre-fracture functional status
- Pre-fracture ADL state
- PT training
- Availability of caregiver

- Post-operative complications
- Time to surgery

Gender **Predictors**

- Type of fracture
- Type of surgery
- Place of fall
- Length of hospital stay
- Marital status

Level of hip pain

- Early postoperation mobility function
- Cognitive function
- · Self-efficacy on performing exercise

Objective

To identify potential predictors of returning home at early hospitalization stage after hip fracture in community-dwelling older men and women

Ethical approvals were granted by:

Research Ethics Committee (Kowloon Central/ Kowloon East)

Human Subjects Ethics Sub-committee of the Hong Kong Polytechnic University

Subject Recruitment

- Age ≥ 65
- With unilateral hip fracture managed operatively in QEH under the care of Department of Orthopaedics & Traumatology

Inclusion Criteria	Exclusion Criteria
Have literacy in Chinese	Inability to walk before hip fracture
Live at their own home	Pathological hip fracture/ with malignancy in origin
	 Associated injuries such as upper limbs fracture or pelvic fracture
	Major concomitant injuries such as multiple trauma due to road traffic accident, rheumatoid arthritis
	 Admission after hip fracture occurred more than 24 hours
	Inability/ unwilling to give informed consent
	Inability to read & write Chinese
	Language barrier

Methodology

All recruited subjects were cared under integrated, standardized multidisciplinary clinical pathway for fragility hip fracture

Underwent operation after hip fracture

Active Rehabilitation

Telephone interview at 6 week post-operation

→ Final discharge destination

Pre- & Post-operative Physiotherapy

Chest Physiotherapy

Pain & Swelling Control

Mobilization Exercise

Strengthening Exercise

Bed Mobility, Transfer & Ambulation Training

Endurance & Cardiovascular Training

Balance, Gait & Functional Training

Patient & Caregiver Empowerment

Potential Predictors & Outcome Measures

Potential Predictors (Independent Variables)	Outcome Measures			
Pain During Walking	Numeric Pain Rating Scale (NPRS)			
Mobility Function	Elderly Mobility Scale (EMS)			
Functional Independence in Daily Living	Modified Barthel Index (MBI)			
Cognition	 Mini-Mental State Examination (MMSE) 			
Self-efficacy	Self-efficacy for Exercise (SEE) Scale			

Potential predictors were assessed at 2nd ambulatory training session

Statistical Analysis

Dependent variable is dichotomous (whether or not the subjects are discharged back to their own home at 6 weeks post-operation)

Multiple logistic regression analysis using 'Enter' method for determining the significant predictors & their respective odds ratios

For Male Subjects:

Returning Home: -2.123+(-0.024)*age+(-0.753)*pain during walking+0.357*MMSE+0.005*SEE+(-0.003)*EMS+0.005*MBI

For Female Subjects:

Returning Home: 0.587+(-0.032)*age+(-0.034)*pain during walking+0.029*MMSE+0.03*SEE+(-0.06)*EMS+0.041*MBI

- SPSS (Version 24.0) used for statistical analysis
- Level of significance alpha-value: 0.05

Results & Outcome

80 community-dwelling older subjects with unilateral hip fracture managed operatively were recruited.

Mean age: 84.2±6.0 years; 32 men & 48 women

In 6th week, 50% and 69.6% of men and women were able to return to home respectively.

Results

Demographic Data	Number (Percentage)
Documented dementia	7 (8.7%)
Availability of caregiver- Pre-operation- Post-operation	21 (26.2%) 8 (10%)
 Delayed operation (>48 hours) Confusion Anaemia Cardiac problem Long holiday Others (e.g. pending relatives' decision) 	24 (30.0%) 1 (1.2%) 2 (2.5%) 4 (5.0%) 5 (6.2%) 12 (15.0%)
Number of medication01-23-7	0 (0.0%) 19 (23.8%) 61 (76.2%)

Results - Male Subjects

Male	p value	95% CI (confidence interval)	Odds ratio	
Age	0.831	0.78-1.22	0.98	
NPRS 2 nd walk	0.04	0.23-0.97	0.47	
EMS 2 nd walk	0.95	0.64-1.61	1.01	
MBI 2 nd walk	0.93	0.86-1.18	1.01	
MMSE post-op	0.04	1.01-2.03	1.43	
SEE Scale	0.93	0.95-1.06	1.00	

After adjusting for age, less hip pain during walking & better cognitive status at 2nd ambulatory training session were found to be significant predictors for returning home.

Results – Female Subjects

Female	p value	95% CI (confidence interval)	Odds ratio
Age	0.67	0.84-1.12	0.968
NPRS 2 nd walk	0.84	0.69-1.35	0.97
EMS 2 nd walk	0.86	0.59-1.57	0.96
MBI 2 nd walk	0.32	0.96-1.12	1.04
MMSE post-op	0.71	0.89-1.20	1.03
SEE Scale	0.18	0.99-1.08	1.03

Traditional social role of Chinese female is to take care of their lifelong partners and families → emotional component seemed to be an important element

Results

Classification Tablea

Predicted						
				BACKTO_HOME_OAH		Percentage
GENDER		Observed		No	Yes	Correct
Male	Step 1	BACKTO_HOME_OAH	No	12	1	92.3
			Yes	3	10	76.9
		Overall Percentage				84.6
Female	Step 1	BACKTO_HOME_OAH	No	2	8	20.0
			Yes			88.5

Overall accuracy (or hit rate) of the logistic regression function for male subjects was 84.6% → good discriminatory power to differentiate between "able to return home group" & "unable to return home group"

Clinical Significance

Patient Stratification Care Approach

Less hip pain
Better Cognition

Likely

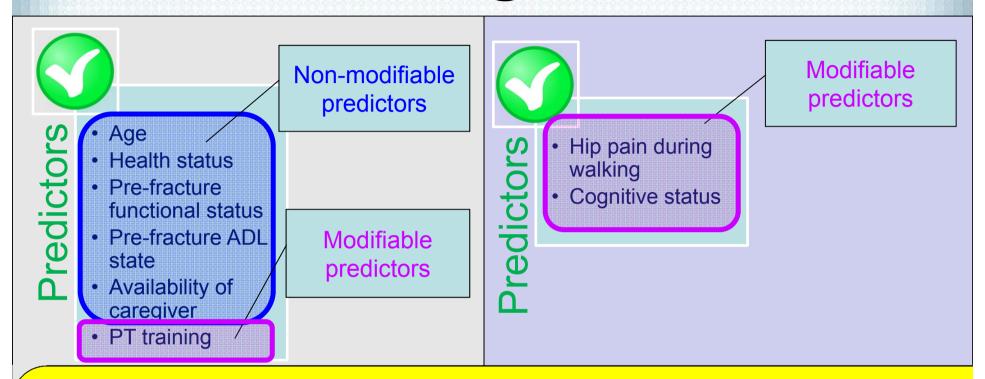
- ► Patient empowerment
- Support services in community

More hip pain Poorer Cognition

- ► Caregiver empowerment
- Suitable rehabilitation unit/ nursing home

2nd ambulatory training session

Discharge



Service Planning

Clinical Significance

Goal-oriented service

- Better symptomatic management (pain control)
- Optimize restorative rehabilitation (365-day service)
- Provide psychosocial support (patient / caregiver empowerment)
 ALL can receive appropriate level of care!

L can receive appropriate level of care!

Conclusion

Hip pain during walking & cognitive status early postoperation were significant predictors for discharge destination in men with fractured hip

Needs identification

Stratified care

Early, safe & smooth discharge

Efficient utilization of levels of care

Reduce hospital stay & enhance quality of life

quaiity of life

Facilitate patient flow & better healthcare resource allocation

resource allocation

Reference

- Al-Ani, A., Samuelsson, B., Tidermark, J., Norling, Å., Ekström, W., Cederholm, T. & Hedström, M. (2008). Early operation on
 patients with a hip fracture improved the ability to return to independent living. The Journal of Bone and Joint Surgery, 90, 143642.
- Chiu, K. C. (2007). Predictors of old-age-home placement in Hong Kong Chinese elderly persons after hip fracture. *Asian Journal of Gerontology and Geriatrics*, *2*, 69-77.
- Cree, A. K. & Nade, S. (1999). How to predict return to the community after fractured proximal femur in the elderly. *Australian & New Zealand Journal of Surgery, 69,* 723-25.
- Deakin, D. E., Wenn, R. T. & Moran, C. G. (2008). Factors influencing discharge location following hip fracture. *Injury International Journal of the care of the Injured*, 39, 213-8.
- Hagino, T., Ochiai, S., Sato, E., Watanabe, Y., Senga, S. & Haro, H. (2011). Prognostic prediction in patients with hip fracture: risk factors predicting difficulties with discharge to own home. *Journal of Orthopedics and Traumatology*, *12*, 77-80.
- Handoll, H.H.G., Sherrington, C. & Mak, J.C.S. (2011). Interventions for improving mobility after hip fracture surgery in adults. *Cochrane Database of Systematic Reviews*. DOI: 10.1002/14651858.CD001704.pub4.
- Hershkovitz, A., Kalandariov, Z, Hermush, V., Weiss, R. & Brill, S. (2007). Factors affecting short-term rehabilitation outcomes of disabled elderly patients with proximal hip fracture. *Archives of Physical and Medical Rehabilitation*, 88, 916-21.
- Jackson, J. P., Whisner, S. & Wang, E. W. (2013). A predictor model for discharge destination in inpatient rehabilitation patients. American Journal of Physical Medicine and Rehabilitation, 92 (4),343-50.
- Kagaya, H., Takahashi, H., Sugawara, K., Dobashi, M., Kiyokawa, N. & Ebina, H. (2005). Predicting outcomes after hip fracture repair. *American Journal of Physical Medicine and Rehabilitation*, *84* (1), 46-51.
- Moppett, I. K., Wiles, M. D., Moran, C. G. & Sahota, O. (2012). The Nottingham Hip Fracture Score as a predictor of early discharge following fractured neck of femur. Age and Ageing, 41, 322-6
- Nanjayan, S. K., John, J., Swamy, G., Mitsiou, K., Tambe, A. & Abuzakuk, T. (2014). Predictors of change in 'discharge destination' following treatment for fracture neck of femur. *Injury International Journal of the Care of the Injured, 45,* 1080-4.
- National Institute for Health and Care Excellence (NICE) Clinical Guideline. (2010). Venous thromboembolism: reducing the risk for patients in hospital. CG92, 1-59. nice.org.uk/guidance/cg92

Thank You

Outcome Measures

Numeric Pain Rating Scale (NPRS)

- 11-point scale (0-10)
- Subjective intensity of pain experienced during walking

Elderly Mobility Scale (EMS)

- Score: 0 (totally dependent) to 20 (independent)
- 7 functional activities: bed mobility, transfers, locomotion, balance and key position changes

Modified Barthel Index (MBI)

- Score: 0 to 100
- Measure functional independence

Mini-Mental State Examination (MMSE)

- Score: 0 to 30
- Measure cognitive ability that correlates with function in daily tasks

Self Efficacy for Exercise Scale (SEE Scale)

- Score: 0 to 90
- Self-report their confidence to engage in exercise where in the face of different barriers

