# Management of In-hospital Cardiac Arrests



### HY So

FHKCA FHKCA(IC) FHKAM(Anaesthesiology) Chairman, Resuscitation Committee, HKCA Consultant(ICU), PWH Service Director (Quality & Safety), NTEC





# **Cardiac Arrest of Inpatients**

| Diagnosis                   | Number | ROSC |
|-----------------------------|--------|------|
| Acute myocardial infarction | 5      | 1    |
| COAD                        | 18     | 4    |
| Congestive heart failure    | 9      | 2    |
| CVA                         | 1      | 0    |
| Intestinal obstruction      | 2      | 0    |
| Pneumonia                   | 11     | 3    |
| Renal failure               | 2      | 0    |
| Septic shock                | 8      | 3    |
| Unknown                     | 18     | 5    |
| Total                       | 74     | 18   |

The study population of both the study by Bernard et al. and the HACA study Group are patients suffering from out-of-hospital ventricular fibrillations.... There is **little published evidence** to support the use of therapeutic hypothermia following **in-hospital cardiac arrest**.



MANAGEMENT OF RESUSCITATION SERVICES



AUDIT TEAM:

Gilbert Ko Po Yu Chan

August 2013

### Governance Policy/team Training Improvement

Hospital Authority, GIA Audit in Management of Resuscitation Services. Aug 2013.

## Management of IHCA

# Timely

### Effective



### Appropriate

## Management of IHCA

# Timely

### Effective

### Appropriate

For **every minute** that passes between collapse and defibrillation, survival rates from witnessed VF sudden cardiac arrest **decrease 7% to 10%**.

American Heart Association. . *Circulation* supplement 2005;112:IV-1-IV-211.

# **Early Defibrillation**

ILCOR strongly encourages the development of early defibrillation programs for nonphysician in-hospital responders

- Basic life support (BLS).
- AED training as a basic skill for healthcare
- Conventional defibrillators or AEDs to all appropriate nonphysician staff
- Making conventional defibrillators or AEDs readily available in strategic areas
- Document all resuscitation efforts accurately
- Collect and review the patient variables, event variables, and outcome variables
- Establish an interdisciplinary committee

There were more survivors to hospital discharge in the units assigned to have volunteers trained in CPR plus the use of AEDs (30 survivors among 128 arrests) than there were in the units assigned to have volunteers trained only in CPR (15 among 107; P=0.03; relative risk, 2.0; 95 percent confidence interval 1.07 to 3.77)

# Use of AED NOT associated with increased survival for IHCA

|                    | No. of Survivors/Total No. (%) |                  | Adjusted RR      | p Value |
|--------------------|--------------------------------|------------------|------------------|---------|
|                    | AED Used                       | AED Not Used     | (95% CI)         |         |
| All Units          |                                |                  |                  |         |
| All arrests        | 734/4515 (16.3)                | 1383/7180 (19.3) | 0.85 (0.78-0.92) | <0.01   |
| VF/pulseless VT    | 364/947 (38.4)                 | 450/1132 (39.8)  | 1.00 (0.88-1.13) | .99     |
| Asystole/PEA       | 370/3568 (10.4)                | 933/6048 (15.4)  | 0.74 (0.65-0.83) | <0.01   |
| Monitored Units    |                                |                  |                  |         |
| All arrests        | 488/2104 (23.2)                | 992/4156 (23.9)  | 0.87 (0.79-0.97) | .01     |
| VF/pulseless VT    | 286/593 (48.2)                 | 368/804 (45.8)   | 1.03 (0.89-1.18) | .71     |
| Asystole/PEA       | 202/1511 (13.4)                | 624/3352 (18.6)  | 0.72 (0.62-0.85) | <0.01   |
| Nonmonitored Units | 5                              |                  |                  |         |
| All arrests        | 246/2411 (10.2)                | 391/3024 (12.9)  | 0.82 (0.70-0.98) | .03     |
| VF/pulseless VT    | 78/354 (22.0)                  | 82/328 (25.0)    | 0.93 (0.63-1.36) | .71     |
| Asystole/PEA       | 168/2057 (8.2)                 | 309/2696 (11.5)  | 0.79 (0.65-0.96) | .02     |

Chan PS, et.al. JAMA 2010; 304:2129-36

We identified 11 695 patients with cardiac arrests at 204 hospitals after the introduction of AEDs. Of these, 2079 (17.8%) had shockable rhythms (VF/pulseless VT) and 9616 (82.2%) had nonshockable rhythms (asystole or pulseless electrical activity).

# "Hands-off" Interruption for AED

| Device | Minimum Interruption, secs<br>(Mean <u>+</u> SD) | Maximum Interruptions, secs<br>(Mean <u>+</u> SD) |
|--------|--------------------------------------------------|---------------------------------------------------|
| А      | 5.2 <u>+</u> 0.1                                 | 8.1 <u>+</u> 0.1                                  |
| В      | 12.3 <u>+</u> 0.2                                | 15.7 <u>+</u> 0.3                                 |
| С      | 15.6 <u>+</u> 0.1                                | 16.9 <u>+</u> 0.1                                 |
| D      | 16.9 <u>+</u> 0.1                                | 18.1 <u>+</u> 0.2                                 |
| E      | 17.1 <u>+</u> 0.2                                | 18.3 <u>+</u> 0.1                                 |
| F      | 19.7 <u>+</u> 0.1                                | 22.1 <u>+</u> 0.3                                 |
| G      | 26.3 <u>+</u> 0.1                                | 28.4 <u>+</u> 0.1                                 |

Snyder D, Morgan C. Crit Care Med 2004; 32(9 Suppl):S431-4

# Push Hard, Push Fast

### 97 OHCA, 813 minutes of CPR

# 36.9% compression rate <80

# 21.7% compression rate <70

Higher compression rate associated with better outcome

Effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome.



Zapletal B, et.al. Resuscitation, 2013, Epub Nov 8, 2013.





Autopulse Non-invasive Cardiac Support Pump



LUCAS 2 Chest Compression System



# **Mechanical Chest Compression**

Only 4 out of 1561 articles useful

Included 868 patients

There is **not enough data** from good quality trials to answer our question and provide a recommendation on whether or not these machines should be used.

#### Chest Compressions During Cardiac Arrest Magnitude of Perfusion Resulting from Chest Compressions



# 40-45 seconds elapse during continuous CPR before the development of the "best possible" level of perfusion

### Minimally Interrupted Cardiac Resuscitation (MICR)

| <b>A</b>                          | No/Total No (%) of Patients |                   | Odds Ratio               |                                                                             |  |
|-----------------------------------|-----------------------------|-------------------|--------------------------|-----------------------------------------------------------------------------|--|
| Outcomes                          | Before MICR                 | After MICR        | (95% CI)<br>Adjusted     | Significant Covariates                                                      |  |
| Primary outcomes                  |                             |                   |                          |                                                                             |  |
| Survival-to-hospital<br>discharge | 4/218<br>(1.8)              | 36/668<br>(5.4)   | <b>3.0</b><br>(1.1-8.9)  | Witnessed arrest & VF                                                       |  |
| Survival with<br>witnessed VF     | 2/43<br>(4.7)               | 23/131<br>(17.6)  | <b>8.6</b><br>(1.8-42.0) | Intubation                                                                  |  |
| Secondary outcomes                |                             |                   |                          |                                                                             |  |
| ROSC                              | 34/218<br>(15.6)            | 154/668<br>(23.1) | <b>1.3</b><br>(0.8-2.0)  | Witnessed arrest, VF,<br>ETT, site                                          |  |
| Survival-to-hospital<br>admission | 35/218<br>(16.1)            | 113/668<br>(16.9) | <b>0.8</b><br>(1.5-1.2)  | Bystander CPR,<br>witnessed arrest, VF,<br>ETT, dispatch-to-arrival<br>time |  |

# **Avoiding Interruptions**

| Interruption Cause        | Time Impact            | Potential Solution                                                                                                                       |
|---------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse determinations      | Small                  | Observe for signs of life<br>Use ET-CO2 monitoring to detect ROSC                                                                        |
| Cardiac rhythm analysis   | Small                  | Rapid determination of rhythm with<br>compression discontinuation<br>Use of artifact-reduction ECG analysis                              |
| Electrical defibrillation | Small-<br>intermediate | Charge defibrillator before discontinue CC<br>Hands-on approach                                                                          |
| Airway management         | Intermediate-<br>large | "Passive" airway management<br>Defer intubation to later phase<br>Place ETT during active CC<br>Avoid excessive ventilation rates and VT |
| Parenteral access         | Small-large            | Defer vascular access to later phase<br>Place vascular access during active CC<br>Use IO device<br>Defer placement of CVC                |

Cunningham LM, et.al. Am J Emerg Med 2012; 30:1630-8

|                                          | Success            | Failure             | p-Value |
|------------------------------------------|--------------------|---------------------|---------|
| Pre-shock pause (s), median (IQR) [n=53] | 11.9<br>(6.8-19.4) | 22.7<br>(15.6-37.7) | 0.002   |
| Compression depth (mm), mean (SD) [n=47] | 39 (11)            | 29 (10)             | 0.004   |



#### Edelson DP, et.al. Resuscitation 2006; 71:137-45

|                                 | Pause to Charge<br>(n=217)        | Charging during compression (n=345) | p-Value |
|---------------------------------|-----------------------------------|-------------------------------------|---------|
| Compression depth before shock  | 47.1 <u>+</u> 10.6 mm             | 47.3 <u>+</u> 10.0 mm               | 0.81    |
| Compression rate before shock   | 106 <u>+</u> 12 min <sup>-1</sup> | 109 <u>+</u> 11 min <sup>-1</sup>   | 0.002   |
| Pre-shock pause                 | 13.3 (8.6-19.5) s                 | 2.6 (1.3-2.7) s                     | <0.001  |
| Post-shock pause                | 2.3 (1.7-3.9) s                   | 1.9 (1.3-2.7) s                     | 0.01    |
| Hands-off time 30s before shock | 14.8 (11-19.6) s                  | 10.3 (6.4-13.8) s                   | <0.001  |
| Inappropriate shocks            | 20.0%                             | 20.1%                               | 0.97    |
| Shocks to rescuers              | 0/217                             | 1/345                               | 0.43    |

Charging during compressions is associated with decreased hands-off time preceding defibrillation, with minimal risk to patients or rescuers.

### **Rationale for limited PPV in Witnessed CA**

- Bystanders reluctant to provide mouth-to-mouth ventilation
- Prolonged interruptions in chest compression
- Increased intrathoracic pressure reduce venous return
- Risk of regurgitation
- Blood in arterial system remained oxygenated at onset of VF
- Gasping of subjects provide ventilation



**Benefits of uninterrupted chest** compressions outweigh the benefits of rescue breathing—at this early stage of resuscitation—because the physiology of cardiac arrest differs from that of asphyxial arrest, where breathing is initially more important.

### **Systematic review of 63 articles:**

Team coordination – planning, leadership and communication – are well studied and highly relevant factors predicting CPR performance quality.

# **Non-technical Skills**

- Leadership
- Communication
- Mutual performance monitoring
- Maintenance of standards and guidelines
- Task management

# Leadership

### **Recommended Behavior**

- Clearly identifiable
- Clinically experienced
- Communicate efficiently
- Delegate tasks to other team members
- Gather information

### Barriers

- Gradient in team authority makes other person team leader
- Clinical inexperience makes team insecure
- Team leaders with lack of authority ignored by members
- Inexperienced leaders expected to lead and learn at same time

# **Closed-loop Communication**

1 - Call-out





15 (31%) patients with

one-year survival

34 (56%) patients with

one-year survival

Sunde K, et.al. Resuscitation 2007; 73:29-39

### **Neurologic Outcome**

| Study or subgroup                         | Experimental                          | Control                 | Risk Ratio                         | Weight  | Risk Ratio           |
|-------------------------------------------|---------------------------------------|-------------------------|------------------------------------|---------|----------------------|
|                                           | n/N                                   | n/N                     | M-H,Fixed,95% CI                   |         | M-H,Fixed,95% Cl     |
| I Conventional cooling witho              | ut extracorporal metho                | ds (IPD, best ever read | ched CPC of I or 2 during hospital | stay)   |                      |
| Bernard 2002                              | 21/43                                 | 9/34                    | -                                  | 12.9 %  | 1.84 [ 0.97, 3.49 ]  |
| HACA 2002                                 | 75/136                                | 54/137                  | <b>*</b>                           | 69.1 %  | 1.40 [ 1.08, 1.81 ]  |
| Hachimi-Idrissi 2001                      | 8/16                                  | 2/17                    |                                    | 2.5 %   | 4.25 [ 1.06, 17.08 ] |
| Subtotal (95% CI)                         | 195                                   | 188                     | •                                  | 84.5 %  | 1.55 [ 1.22, 1.96 ]  |
| Total events: 104 (Experimen              | tal), 65 (Control)                    |                         |                                    |         |                      |
| Heterogeneity: Chi <sup>2</sup> = 2.92, o | f = 2 (P = 0.23); I <sup>2</sup> = 32 | %                       |                                    |         |                      |
| Test for overall effect: $Z = 3.6$        | 54 (P = 0.00027)                      |                         |                                    |         |                      |
| 2 Cooling with haemofiltratio             | n (no IPD, CPC of I or                | 2 at six months)        |                                    |         |                      |
| Laurent 2005                              | 7/22                                  | 9/20                    |                                    | 12.1 %  | 0.71 [ 0.32, 1.54 ]  |
| Subtotal (95% CI)                         | 22                                    | 20                      | -                                  | 12.1 %  | 0.71 [ 0.32, 1.54 ]  |
| Total events: 7 (Experimental)            | ), 9 (Control)                        |                         |                                    |         |                      |
| Heterogeneity: not applicable             |                                       |                         |                                    |         |                      |
| Test for overall effect: Z = 0,8          | 37 (P = 0.38)                         |                         |                                    |         |                      |
| 3 Unknown method (no IPD,                 | Glasgow Outcome scale                 | e of I-3 at one month   | ))                                 |         |                      |
| Mori 2000                                 | 18/36                                 | 2/18                    |                                    | 3.4 %   | 4.50 [ 1.17, 17.30 ] |
| Subtotal (95% CI)                         | 36                                    | 18                      | -                                  | 3.4 %   | 4.50 [ 1.17, 17.30 ] |
| Total events: 18 (Experiment:             | al), 2 (Control)                      |                         |                                    |         |                      |
| Heterogeneity: not applicable             |                                       |                         |                                    |         |                      |
| Test for overall effect: Z = 2.1          | 9 (P = 0.029)                         |                         |                                    |         |                      |
| Total (95% CI)                            | 253                                   | 226                     | •                                  | 100.0 % | 1.55 [ 1.24, 1.94 ]  |
| Total events: 129 (Experimen              | tal), 76 (Control)                    |                         |                                    |         |                      |
| Heterogeneity: $Chi^2 = 9.21$ , o         | tf = 4 (P = 0.06); I <sup>2</sup> =57 | %                       |                                    |         |                      |
| Test for overall effect: Z = 3,8          | 34 (P = 0.00012)                      |                         |                                    |         |                      |
|                                           |                                       |                         |                                    |         |                      |
|                                           |                                       |                         | 0.01 0.1 1 10 100                  |         |                      |
|                                           |                                       | Faw                     | ours no cooling Favours cooling    |         |                      |

Arrich J, et.al. Cochrane Database Syst Rev 2009 Oct 7; (4):CD004128

Several studies have reported the **use of TH for IHCA with variable results** likely due to small sample size, varying patient severity, and poor TH implementation. 67, 498 patients in 538 hospital in Get With the Guidelines Resuscitation database 2003-9

### TH used in 2% 0.7% in 2003, 3.3% in 2009

Target temperature (32-34°C) NOT achieved in 44.4%

### Overcooled in 17.6%

Mikkelsen ME, et.al. Crit Care Med 2013; 41:1385-95

## Management of IHCA

# Timely

### Effective

### Appropriate

# At present, such committees tend to focus on the procedural aspects of CPR, such as time to first defibrillation, and whether the selection of medications and their sequential administration were appropriate for the corresponding rhythm disturbances.

# **Committees do not regularly scrutinize CPR attempts for appropriate clinical indications**.

This approach differs from continuous quality improvement activities for other invasive procedures, such as bronchoscopy and coronary angiography. This difference in approaches is particularly striking, given the high morbidity and mortality associated with CPR.

### Why is CPR assessed with less rigor?

A decision about whether resuscitation should or should not be attempted was documented on admission in only 10% of cases.

Our Advisors thought DNACPR should have been documented in a further 20%. In short, resuscitation was wrongly attempted in many of these cases because nobody had recognised that they were in danger of a cardiac arrest.

...today we stand at a crossroads. To the left lies a destiny familiar from America where 60% of us will die in an ICU and we will spend 50% of NHS expenditure in the last six months of life, much of it seeking to postpone the inevitable. This will happen, not because the patient has asked for it or because someone has taken a calculated decision that it is in the patient's interest to make the attempt, but because the doctors think that they have a duty to do everything that they can to prolong the process of dying.

"The success of intensive care is not to be measured only by the statistics of survival, as though each death were a medical failure. It is to be measured by the quality of lives preserved or restored, the quality of the dying of those in whose interest it is to die and by the quality of relationships involved in each death."

# 31 198 of 64 339 (48.5%) patients with IHCA achieved ROSC and 9912 (15.4%) survived to discharge.

Goldberger ZD, et.al. Lancet 2012; 380:1473-81

The GMC recognises that CPR should be administered in an emergency, but it is not good medical practice to fail to anticipate the needs of the patient before an emergency arises. If the failure is deliberate or reckless then I suggest that it is arguably criminal.

| Year | Hospital 1 | Hospital 2 |
|------|------------|------------|
| 1998 | 524        | ?          |
| 1999 | 425        | ?          |
| 2000 | 330        | 2063       |
| 2001 | 282        | 1572       |

# According to the GIA Audit in 2013, there are ~4,000 resuscitations per year in HA hospitals.

# Was CPR an appropriate medical therapeutic option?

# If CPR is not medically appropriate then why was it used?

Berger JT. JAMA Internal Medicine 2013; 173: 1859-60

# Did the attending physician overestimate the potential benefit of CPR?

Is there inadequate knowledge about the natural history of progressive diseases, such as CHF and dementia?

The standard of care and the boundaries of normative practice should be continually refined.

# Was CPR an appropriate medical therapeutic option?

# If CPR is not medically appropriate then why was it used?

Berger JT. JAMA Internal Medicine 2013; 173: 1859-60

# **Barriers to Excluding CPR**

- Physician
- Patient or surrogate
- Hospital/Health system

Berger JT. JAMA Internal Medicine 2013; 173: 1859-60

# **Barriers to Excluding CPR**

### Physician

- Unclear about their ethical responsibility and professional license to make medical assessments about CPR?
- Limited communication skills?
- Uncomfortable with discussions of prognosis and mortality?
- Personal moral, religious or cultural influences make EOL discussions particularly uncomfortable?

### **Review Online**

# Frontline Talk: ine Do Not Resuscitate

NTEC Patient Relations & Engagement Service

Part I



Dr Catherine CHUI (M&G,TPH) <u>Powerpoint</u> <u>Video</u>

Attendance and Evaluation

#### Part 2



#### Dr YK KO (MED,NDH)

Powerpoint Video: episode 1, 2, 3, 4



Dr CY CHAN (A&E,AHNH)

<u>Powerpoint</u> Video: <u>episode 1</u>, <u>2</u>, <u>3</u>, <u>4</u>



<u>Powerpoint</u> Video: <u>episode 1</u>, <u>2</u>, <u>3</u>, <u>4</u>, <u>5</u>



© Cambridge University Hospitals NHS Foundation Trust

| Universal Form of | Addressograph |
|-------------------|---------------|
| Treatment Options |               |

Relevant information about patient's situation:

Details of discussion (and/or reasons for not having one, if none has taken place):

Please continue overleaf

This patient is for the following treatment plan:(please sign one of the below boxes, add documentation where appropriate, complete the resuscitation box, and sign and date)



**Instructions for Review:** Signature of Doctor overleaf indicates that this form is valid as at the time of signing.

If any alterations are made to original decisions, then please sign changes. If review boxes are full below, a new form must be started.

Note: This form may be temporarily revoked in the context of a procedure which may induce cardiac arrest eg pacing, angiogram, other (please specify):

| REVIEW has taken place on |      |           |             |  |
|---------------------------|------|-----------|-------------|--|
| Date and time             | Name | Signature | Designation |  |
|                           |      |           |             |  |
|                           |      |           |             |  |
|                           |      |           |             |  |
|                           |      |           |             |  |
|                           |      |           |             |  |



# **Barriers to Excluding CPR**

### • Patient or surrogate

- Cognitive, emotional and social concerns
- Health literacy
- Coping capabilities
- Preparation for consequences of illness
- Nonmedical goal for CPR (e.g. to protect family from distress)

# Attitude towards life-sustaining treatment

| Sta | tements*                                                                                 | Mean <sup>†</sup> (SD) | P value | Attitude <sup>‡</sup> |
|-----|------------------------------------------------------------------------------------------|------------------------|---------|-----------------------|
| 1.  | If life-prolonging technology exists, it should always be used. (-)                      | 2.98 (1.30)            | 0.172   | Agrees                |
| ۷.  | as possible, no matter how uncomfortable the machines are, (-)                           | 2.81 (1.11)            | 0.027   | Agrees                |
| 3.  | If a patient is expected to die, it is best not to prolong their lives by any means. (+) | 2.61 (1.26)            | 0.011   | Disagrees             |
| 4.  | Under no circumstance should life-sustaining machines be stopped. (-)                    | 2.90 (1.22)            | 0.115   | Agrees                |
| 5.  | It is a doctor's duty to stop life-prolonging treatments of patients if a patient does   | 3.27 (1.13)            | 0.024   | Agrees                |
|     | not want them anymore. (+)                                                               |                        |         |                       |
| 6.  | When a person is in a vegetative state, medical treatments should not be used to         | 2.80 (1.23)            | 0.089   | Disagrees             |
|     | keep them alive. (+)                                                                     |                        |         |                       |
| 7.  | If a patient is unable to breathe without a breathing machine, it would be wrong to      | 2.77 (1.19)            | 0.054   | Agrees                |
|     | take them off the machines (even if the condition is hopeless) because that would        |                        |         |                       |
| _   | be killing the patient. (-)                                                              |                        |         |                       |
| 8.  | Even if my condition is hopeless, I would want my life prolonged as much as              | 2.57 (1.23)            | 0.0002  | Agrees                |
| ~   | possible, even if it requires life-sustaining machines to keep me alive. (-)             |                        |         |                       |
| 9.  | Every patient should make an advance decision for himself/herself whether to             | 3.62 (1.09)            | 0.0001  | Agrees                |
|     | continue life-support treatment (life-sustaining machines) when treatment is futile      |                        |         |                       |
|     | and he/she is expected to die. (+)                                                       |                        |         |                       |
| 10. | Someone (doctors, patients, or relatives) should make the decision whether to            | 3.34 (1.22)            | 0.0003  | Agrees                |
|     | continue the life-support treatment for the patient when all the medical therapy is      |                        |         |                       |
|     | no longer effective. (+)                                                                 |                        |         |                       |

# **Barriers to Excluding CPR**

- Hospital/Health system (Institutional)
  - Failure to retrieve advance directive documents archived in hospital records
  - Fidelity in which the patient's code status is communicated to all clinicians caring for patient
  - Availability of clinical ethics consultation and palliative care services
  - Assistance for manage emotionally overwhelmed patients/families

## Management of IHCA



### Effective

### Appropriate

### Adverse Signs Before Cardiac Arrest

| Adverse Sign          | %     | Adverse Sign        | %    |
|-----------------------|-------|---------------------|------|
| RR>30/min             | 48.6% | Heart rate <40/min  | 4.1% |
| SpO <sub>2</sub> <90% | 45.9% | RR <10/min          | 2.7% |
| HR >140/min           | 23.0% | GCS <11             | 1.4% |
| SBP <90mmHg           | 21.6% | Coma                | 1.4% |
| Arterial pH<7.25      | 10.8% | Serum pH >7.55      | Nil  |
| Serum Na <140mmol/L   | 8.1%  | Serum K <2.5        | Nil  |
| Serum K >5.5mmol/L    | 6.8%  | Serum Na >150mmol/L | Nil  |
| Oliguria              | 5.4%  | Convulsion          | Nil  |

# ACADEMIA

| 638 Primary Events                        |                       |                    |                       |                                                  |                       |                   |                                                  |                    |                       |                   |                       |
|-------------------------------------------|-----------------------|--------------------|-----------------------|--------------------------------------------------|-----------------------|-------------------|--------------------------------------------------|--------------------|-----------------------|-------------------|-----------------------|
| 308 Deaths                                |                       |                    |                       | 141 Cardiac Arrests                              |                       |                   |                                                  | 189 ICU admissions |                       |                   |                       |
| 168 With140 Withoutantecedentsantecedents |                       |                    | vithout<br>edents     | 112 With<br>antecedents29 Without<br>antecedents |                       |                   | 103 With<br>antecedents86 Without<br>antecedents |                    |                       | ithout<br>edents  |                       |
| 148<br>With<br>DNAR                       | 20<br>Without<br>DNAR | 12<br>With<br>DNAR | 16<br>Without<br>DNAR | 16<br>With<br>DNAR                               | 96<br>Without<br>DNAR | 7<br>With<br>DNAR | 22<br>Without<br>DNAR                            | 10<br>With<br>DNAR | 93<br>Without<br>DNAR | 3<br>With<br>DNAR | 83<br>Without<br>DNAR |

# **Causes of Suboptimal Care**

- Failure of organization
- Lack of knowledge
- Failure to appreciate urgency
- Lack of experience
- Failure to seek advice
- Lack of supervision
- Medical staff not available
- Failure of equipment
- Fatigue
- Non-medical staff not available

# Medical Emergency Team (MET)

The concept of Cardiac Arrest Team is changed to a Medical Emergency Team in our institution.

Instead of waiting until the patient all but dies, the MET is called according to physiological abnormalities such as hypotension and tachypnoea...

|                                                 | Before<br>MET | After<br>MET | Difference<br>(95% CI) | Relative risk ratio<br>(95% Cl) |
|-------------------------------------------------|---------------|--------------|------------------------|---------------------------------|
| No. of cardiac arrests                          | 63            | 22           | 41 (23–59)             | 0.35 (0.22–0.57)                |
| Deaths from cardiac arrest                      | 37            | 16           | 21 (7–35)              | 0.43 (0.26–0.70)                |
| No. of days in ICU after<br>cardiac arrest      | 163           | 33           | 130 (110–150)          | 0.20 (0.13–0.33)                |
| No. of days in hospital after<br>cardiac arrest | 1353          | 159          | 1194 (1119–1269)       | 0.11 (0.09–0.13)                |
| Inpatient deaths                                | 302           | 222          | 80 (37–123)            | 0.74 (0.70–0.79)                |

# MERIT

|                         | Control | MET  | р     | Difference (95% CI)*     | Adjusted p | Adjusted odds ratio (95% CI) | ICC (95% CI)              | DEFT  |
|-------------------------|---------|------|-------|--------------------------|------------|------------------------------|---------------------------|-------|
| Primary outcome         | 5.86    | 5.31 | 0.804 | -0·264 (-2·449 to 1·921) | 0.640      | 0·98 (0·83 to 1·16)          | 0·0666 (0·0525 to 0·0841) | 4·018 |
| Cardiac arrest†         | 1.64    | 1.31 | 0.306 | -0.208 (-0.620 to 0.204) | 0.736      | 0.94 (0.79 to 1.13)          | 0.0196 (0.0065 to 0.0707) | 1.511 |
| Unplanned ICU admission | 4.68    | 4·19 | 0.899 | -0·135 (-2·330 to 2·060) | 0.599      | 1.04 (0.89 to 1.21)          | 0·0951 (0·0757 to 0·1191) | 4·258 |
| Unexpected death†       | 1.18    | 1.06 | 0.564 | -0.093 (-0.423 to 0.237) | 0.752      | 1.03 (0.84 to 1.28)          | 0.0205 (0.0061 to 0.0663) | 1.457 |

Outcome data are crude rate per 1000 admissions. ICC= intraclass correlation coefficient. \*Difference weighted by number of hospital admissions during study period. †Excludes events with pre-existing NFR orders.

Table 3: Primary and secondary outcomes during study period

The MET system greatly increased the frequency of emergency team calling but did not decrease cardiac arrests, unplanned ICU admissions or unexpected death.

# MERIT?

...a cluster randomized design leads to a loss of statistical power when compared with a patient-randomized study.

Even though over 70 000 patients and 15 000 adverse events were recorded in the 23 hospitals, Hillman (2006) suggests the study was underpowered and would have needed the participation of over 100 hospitals to show any difference.

# MERIT?

Implementation of any acute resuscitation team is complex, and arguably requires a change in culture and communication patterns. Culture change rarely occurs rapidly and needs more than just didactic education.

As such, 4 months may be an insufficient preparatory time, and 6 months an insufficient study period.

# **Chain of Prevention**



Smith GB. Resuscitation 2010; 81:1209-11



#### REVIEW PAPER

# Review and performance evaluation of aggregate weighted 'track and trigger' systems $^{\bigstar}$

Gary B. Smith<sup>a,\*</sup>, David R. Prytherch<sup>b</sup>, Paul E. Schmidt<sup>b</sup>, Peter I. Featherstone<sup>b</sup>

Resuscitation (2008) 79, 11-21



CLINICAL PAPER

# A review, and performance evaluation, of single-parameter ''track and trigger'' systems<sup>\*</sup>

```
Gary B. Smith<sup>a,*</sup>, David R. Prytherch<sup>b</sup>, Paul E. Schmidt<sup>b</sup>,
Peter I. Featherstone<sup>b</sup>, Bernie Higgins<sup>c</sup>
```

# Modified Early Warning Signs (MEWS)

| Score  | 3   | 2     | 1       | 0       | 1             | 2       | 3      |
|--------|-----|-------|---------|---------|---------------|---------|--------|
| RR     |     | ≤8    |         | 9-14    | 15-20         | 21-29   | >29    |
| HR     |     | ≤40   | 41-50   | 51-100  | 101-110       | 111-129 | >129   |
| SBP    | ≤70 | 71-80 | 81-100  | 101-199 |               | ≥200    |        |
| UO     | Nil | <0.5  |         |         |               |         |        |
| Тетр   |     | ≤35   | 35.1-36 | 36.1-38 | 38.1-<br>38.5 | ≥38.6   |        |
| Neurol |     |       |         | Alert   | Voice         | Pain    | Unresp |

Gardner-Thorpe J, et.al. Ann R Coll Surg Engl 2006; 88:571-75



Effect of Implementation of Modified Early Warning Score (MEWS) in PYNEH on Outcome of Adult Septic Patients Compared with Regional Hospitals Not Implementing MEWS

Chan KC<sup>1</sup>, Shum HP<sup>1</sup>, Aboo GH<sup>2</sup>, Lao WC<sup>3</sup>, Liu KS<sup>2</sup>, Yam YC<sup>1</sup>

<sup>1</sup>Department of Intensive Care, <sup>2</sup>Quality & Safety Office, <sup>3</sup>Department of Medicine Pamela Youde Nethersole Eastern Hospital

| PHYSIOLOGICAL<br>PARAMETERS | 3     | 2        | 1           | 0           | 1           | 2         | 3          |
|-----------------------------|-------|----------|-------------|-------------|-------------|-----------|------------|
| Respiration Rate            | ≤8    |          | 9 - 11      | 12 - 20     |             | 21 - 24   | ≥25        |
| Oxygen<br>Saturations       | ≤91   | 92 - 93  | 94 - 95     | ≥96         |             |           |            |
| Any Supplemental<br>Oxygen  |       | Yes      |             | No          |             |           |            |
| Temperature                 | ≤35.0 |          | 35.1 - 36.0 | 36.1 - 38.0 | 38.1 - 39.0 | ≥39.1     |            |
| Systolic BP                 | ≤90   | 91 - 100 | 101 - 110   | 111 - 219   |             |           | ≥220       |
| Heart Rate                  | ≤40   |          | 41 - 50     | 51 - 90     | 91 - 110    | 111 - 130 | ≥131       |
| Level of<br>Consciousness   |       |          |             | А           |             |           | V, P, or U |

\*The NEWS initiative flowed from the Royal College of Physicians' NEWSDIG, and was jointly developed and funded in collaboration with the Royal College of Physicians, Royal College of Nursing, National Outreach Forum and NHS Training for Innovation.



Training for Innovation

Royal College of Physicians. National Early Warning Score: Standardising the assessment of acute illness severity in the NHS. RCP 2012



% of observations which were followed by cardiac arrest, unanticipated intensive care unit admission or death within 24 hours at, or above, a given EWS value

# Cardiac Arrest Risk Triage (CART)

| Vital Sign                    | Score |
|-------------------------------|-------|
| Respiratory rate, breaths/min |       |
| <21                           | 0     |
| 21-23                         | 8     |
| 24-25                         | 12    |
| 26-29                         | 15    |
| >29                           | 22    |
| Heart rate, beats/min         |       |
| <110                          | 0     |
| 110-139                       | 4     |
| >139                          | 13    |
| Diastolic BP, mm Hg           |       |
| >49                           | 0     |
| 40-49                         | 4     |
| 35-39                         | 6     |
| < 35                          | 13    |
| Age, y                        |       |
| $<\!55$                       | 0     |
| 55-69                         | 4     |
| >69                           | 9     |

Best for predicting cardiac arrest (AUC 0.83), ICU transfer (0.77) and composite outcome (0.78)

# **Chain of Prevention**



Smith GB. Resuscitation 2010; 81:1209-11

the effectiveness of a rapid response system (RRS) programme ". . .is dependent not only on the existence of an MET but mainly on the **periodic and** continued education and training of the entire hospital staff . . .".

## Management of IHCA

# Timely

### Effective



### Appropriate