Interventional Pulmonology From Diagnostic to Therapeutic

Dr. CHAN Wai Man Johnny

MBBS, MRCP, MSc, MHA, FRCP (Edin, Glasg & Lond), FHKCP, FHKAM(Med)

Consultant and Head of Respiratory Division Department of Medicine Queen Elizabeth Hospital

Respiratory Diseases: basic tools

Flexible Bronchoscopy

Mainly diagnostic

"Surgical" interventions

Rigid bronchoscopy: Airway stents Laser...etc.

Video-assist thoracoscopy: Lung resection Surgical pleurodesis..etc.

General Anaesthesia + Operation Theatre + Rigid instruments

Diagnosis of pulmonary lesions Peripheral lung lesion Electromagnetic navigation Radial endobronchial ultrasonography Mediastinal adenopathy Linear endobronchial ultrasonography Early detection of lung cancer Autofluorescence bronchoscopy Narrow band imaging Confocal bronchoscopy Central airway obstruction Mechanical debulking and dilation Rigid bronchoscopy Balloon bronchoplasty Microdebridement Stent placement Ablation therapies Endobronchial laser Argon plasma coagulation Electrocautery Cryotherapy Brachytherapy Photodynamic therapy Artificial airway Percutaneous tracheostomy Minitracheostomy

Transtracheal oxygen catheter

Pleural disease

Medical pleuroscopy and pleurodesis

Indwelling pleural catheter

Thoracic ultrasonography

Other diseases

Asthma

Bronchial thermoplasty

Emphysema

Endobronchial valve

Hsia D and Musani AI Med Clin N Am (2011)

Rapidly-growing interventional options

- Transbronchial needle aspiration (TBNA) and endobronchial ultrasound-guided (EBUS) TBNA
- Electrocautery/diathermy
- Argon plasma coagulation (APC)
- Laser
- Cryotherapy
- Cryoextraction
- Photodynamic therapy (PDT)
- Brachytherapy
- Tracheobronchial stents
- Electromagnetic navigation bronchoscopy (ENB)
- Endobronchial valves for emphysema
- Bronchial thermoplasty for asthma

BTS guidelines for Advanced Diagnostic and Therapeutic Flexible Bronchoscopy (2011)

Airway \rightarrow Pleural space Diagnostic \rightarrow Therapeutic

Just "New Toys"?

- Minimally invasive alternative(s)
- Flexible instruments
- Many can be performed as "day procedures"
- Local anaesthesia + conscious sedation
- Endoscopic suites

Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

Access beyond airway walls

The Equipment

- 6.9mm scope with 2mm instrument channel
- Hybrid: USG/Doppler + video-bronchoscope
- Real-time USG-guided sampling with 22G needle

Indications

1. Staging of NSCLC

 Sampling of mediastinal and hilar lymph nodes (stations: 2-4, 7, 10-12)

Diagnosis of mediastinal lesions

Lymphoma

2.

- Sarcoidosis (Wong M et al. ERJ 2013)
- Tuberculosis

Tumours adjacent to the airways (Chan JW et al. Hong Kong Med J 2014)

EBUS: a reliable diagnostic tool

Table 4—Characteristics of CT, PET, and EBUS-TBNA in the Correct Prediction of Mediastinal Lymph Node Staging*

Tests	Sensitivity	Specificity	PPV	NPV	Accuracy
CT	76.9	55.3	37.0	87.5	60.8
PET	80.0	70.1	46.5	91.5	72.5
EBUS-TBNA	92.3	100	100	97.4	98.0

*Data are presented as %. When the results of the three modalities were analyzed using χ^2 tests describing the correct prediction of the lymph node status, the outcome was highly significant (p < 0.00001).

Technique	Sensitivity (%)	Negative predictive value (%)	Prevalence (%) (range)
Cervical mediastinoscopy	78-81	91	39 (1 57 1)
Conventional TBNA	76–78	71-72	75 (30–100)
EBUS-TBNA	90	76	68 (17-98)
EUS-FNA	84-88	77–81	61 (33–85)

tEBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration; EUS-FNA, endoscopic ultrasound-guided fine needle aspiration.

> Toloza EM, et al. CHEST 2003 Detterbeck FC, et al. CHEST 2007 Medford AR, et al. Respirology 2010

Yasufuku K et al. CHEST 2006

EBUS-TBNA: Evaluations

Pros

- Daycase
- no GA required
- In endoscopy suite
- ↓ procedural time
- Even ↑ diagnostic value if combined with EUS

Rintoul RC et al. ERJ 2005 Lee YT et al. HKMJ 2010

- Safe:
 - overall complication rate~1%

Shah A et al. CHEST 2011

Cons

- ♦ ↓ Negative predictive value than mediastinoscopy
- Smaller sample size
- * \uparrow initial setup costs

Endobronchial USG for peripheral lesions

Yield for conventional flexible bronchoscopy only $\sim 30\%$

EBUS radial probe (miniprobe)

- A small radial USG probe inserted via bronchoscope (+/-) guide sheath
- "Extended working channel" to lesions along or adjacent to small airways
- Enable biopsy, brush, bronchial aspirate, needle aspiration and curette

Peripheral lesions: "Additional guides"

Fluoroscopic guidance

Virtual Bronchoscopy

Navigational tools

Mechanisms of AFI

Normal

Dysplasia

C.I.S.

green

Bronchitis

magenta

	Display color (Detection Light)	<mark>R</mark> (G' Reflected light)	G (Auto Fluorescence)	B (G' Reflected light)	
	normal				ロ (
Light intensity	Cancer, Dysplasia				ロシ 🔴
	Bronchitis				⊄ ●

Yasufuku K. Clin Chest Med 2010

Potential indications of AFI

- Detection of early lung cancer with abnormal sputum cytology
- 2. Surveillance after curative resection of lung cancer
- 3. Guidance to endoscopic ablative procedures like Cryotherapy

	WLB	AFB
Sputum atypia group [#]		
Sensitivity	57.1 (20-88)	85.7 (42-99)
Specificity	44.9 (31-60)	26.5 (15-41)
PPV	12.9 (4-31)	14.3 (6-29)
NPV	88.0 (68–99)	93.0 (64–100)
Suspicious sputum cells		
group [¶]		
Sensitivity	60.0 (17-93)	100 (46–100)
Specificity	58.8 (32-81)	35.3 (15-61)
PPV	30.0 (8-65)	31.3 (12–59)
NPV	83.3 (57–97)	100 (52–100)
Whole group ⁺		
Sensitivity	58.3 (29–84)	91.7 (60-100)
Specificity	50.0 (38-62)	26.4 (17-38)
PPV	16.3 (7–31)	17.2 (9–29)
NPV	87.8 (73-95)	95.0 (73-100)

Lam B et al. ERJ 2006

AFI: limitations

- ↓ specificity
- ♦ ↓ central tumours
- Varying accuracies with different pre-cancerous lesions
- Addition of Narrow Band Imaging (NBI) might improve the performance

Technique	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
WLB	26.5	63.9	34.4	54.9
AFI	52	79.6	64.4	69.9
NBI	66	84.6	75.4	77.7
AFI+NBI	86.1	86.8	84.4	88

WLB = White light videobronchoscopy, AFI = Autofluorescence imaging videobronchoscopy, NBI = Narrow band imaging videobronchoscopy, PPV = Positive predictive value, NPV = Negative predictive value

Zaric B et al. Ann Thorac Med 2013

Mechanism of Cryotherapy

- N₂O vaporizes at the metal tip of the cryoprobe with ↓ pressure
- → cooling (Joule- Thomsen) effect (-89°C)

(CHEST 1996; 110:718-23)

- "Cryo-destruction": freeze/thaw action + vascular damage
- Cartilage is cryo-resistant:
 ↓↓ bronchial perforation
- "Cryo-adhesive" effect

Vergnon JM et al. ERJ 2006

Indications

 Relief of malignant major airway obstruction: de-bulking +/- "cryorecanalization"

Schumann C et al. J Thorac Cardiovasc Surg 2010; Asimakopoulos G et al. Chest 2005

- Treatment of early superficial carcinoma or carcinoma-in-situ Deygas N et al. Chest 2001; Vergnon
- Cryo-biopsy: bronchial / transbronchial

Babiak A et al. Respiration 2009;Franke KJ et al. Lung 2009

Removal of foreign bodies

Cryotherapy: evaluations

- Safe
- Few adverse effects:
 - cough
 - fever
 - airway oedema
 - Bleeding
- Delayed effects
- Multiple sessions

Argon Plasma Coagulation(APC)

- High-frequency electrical current via ionized argon delivered to target tissue
- Self-limiting depth (≤5mm)
- Flexibility: Direction determined by the shortest distance between the jet and tissue (not direction of applicator)

Indications

- ♦ Haemoptysis Morice RC et al. Chest 2001
- Symptomatic airway obstruction Morice RC et al. Chest 2001
- Others:
 - Benign tumours (e.g. carcinoid) Miller SM et al. J Bronchol Interv Pulmonol 2013
 - Stent overgrowth or ingrowth (malignancy or granulation tissue)
 Colt HG. J Bronchol 1998
 - Cicatricial stenosis Yasuo M et al. Respirology 2006
- Not much evidence for treatment of early superficial cancer

APC: Potential risks

Uncommon Uncommon

- Airway wall perforation
 - Leading to mediastinal and subcutaneous emphysema
- Burnt bronchoscopic tips
- Endobronchial burn (airway fires)
- MI, Stroke
- Gas embolism (rare) Goldman Y et al. J Bronchol 2007; Reddy C et al. Chest 2008

in the Cent	ral Airways ^{6.12-14}	
Techniques	Advantages	Disadvantages
Mechanical Removal	• Standard biopsy forceps	• Bleeding may cause less accurate management
Nd-YAG Laser	Deep necrosisImmediate result	 Relatively expensive Skill & expertise needed "Overkill," fibrosis, and scarring
Electrocautery and Argon Plasma Coagulation	 Simple & inexpensive facility Immediate visible result Flexibility (angulation) 	Superficial necrosisThermal fibrosis and scarring
Cryotherapy	 Simple & inexpensive facility Lethal effect (mm) Safe for cartilage 	 Special equipment Multiple sessions Unpredictable secondary effect
High-Dose-Rate Brachytherapy	 Simple treatment Short sessions "Accurate" dosimetry calculation 	 Expensive facility Normal tissue damage Multiple treatment sessions Lack feedback dosimetry for catheter movement during irradiation
Photodynamic Therapy	 Simple treatment Deep necrosis Vascular thrombosis Safe for cartilage 	 Relatively expensive, elaborate facility Complex dosimetry Late necrosis, cleanup bronchoscopy Skin photosensitivity (hematoporphyrin)

 Table 2
 Advantages and Disadvantages of Bronchoscopic Techniques for Treating Early-Stage Cancer in the Central Airways^{6.12-14}

Sutedja T et al. Clinical Lung Cancer, Vol. 2, No. 4, 264-270, 2001

Pleuroscopy (Medical Thoracoscopy): Semi-rigid instrument

- Handing ~ flexible bronchoscope1 port of entry
- flexible trocar

Distal 5 cm: 160° up/130° down Outer diameter: 7mm Working channel: 2.8mm

Common Indications

Diagnostic

- Exudative pleural effusions of unknown origin
- Suspected pleural secondaries (staging)

Therapeutic

 Talc pleurodesis for malignant pleural effusion

The procedure

Law WL, Chan JW et al. HKMJ 2008

Adenocarcinoma

D.O.BIRTH 23/08/2007 08:59:19

Tuberculosis

D.O.BIRTH 10/05/2007 08:54:06

COMMENT

COMMENT

Pleuroscopy: evaluation

Pros:

Yield 79-96%

rigid ~ semi-rigid

[Lee et al. 2007; Munavvar et al.2007; Law WL, Chan JW et al. 2008]

 Superior to pleural biopsy and pleural tapping [Harris RJ et al. Chest 1995;

Blanc FX et al. Chest 2002]

Safe

- Mortality (0.09-0.24%)
- Complications: mild and self-limiting
- Commonest: Fever and SC emphysema

[Law WL, Chan JW et al. HKMJ 2008]

Cons: (semi-rigid pleuroscope)

- ◊ Possibly ↓ yield with mesothelioma or lymphoma
- Difficulty with dense adhesions or loculations
- ◆ ↓ Bleeding control

Malignant Effusions: pleurodesis

- Symptom relief with drainage + prevention of recurrence
- Might not be the best solution:

 - Inability to tolerate surgical procedure
 - Significant failure rate
 - Adverse reactions
 - Hospitalizations

Davies HE and Lee GYC. Curr Opin Pul Med 2013

Indwelling (Tunneled) Pleural Catheter (IPC)

Day procedure and ambulatory drainage
 Tunneled catheter connected to vacuum containers

IPC Outcomes

- 90% symptoms-free at 30-D without additional interventions
- $_{\diamond}$ ~50% "auto-pleurodesis" at 2-6 weeks

Temblay A et al. Chest 2006

- Non-inferior to talc pleurodesis for dyspnoea control and QOL Davies HE et al. JAMA 2012
- More cost-effective

Puri V et al. Ann Thorac Surg 2012

Lower direct costs: ↓ hospitalizations

Boshuizen RC et al. Respiration 2013

Few complications: infections (<5%)
 Fysh ET et al. Chest 2013

A ONE-WAY VALVE: Isolate the lobe \rightarrow Lobe shrinkage \rightarrow Complete collapse \rightarrow Volume reduction

Advance housing into target segment, confirm sizing using gages

Confirm Zephyr EBV positioning and sizing Zephyr EBV allowing air to exit from during expiration Zephyr EBV preventing air from entering during inspiration

Lung volume reduction (LVR) in emphysema

- Hyperinflation in emphysema:
 - ↓ chest wall compliance
 - ↓ function respiratory muscles
 - Leading to SOB, \downarrow exercise tolerance and QOL
- ♦ LVR surgery [Fishman A et al. NEJM 2003]
 - Improves functional capacity and survival in a subgroup
 - Upper lobe predominant disease and poor baseline lung function
 - Substantial operative risks

EBV for emphysema (Bronchoscopic Lung Volume Reduction)

- Modest ↑ lung function, exercise tolerance and symptoms
 [Sciurba FC NEJM 2010; Herth FJ ERJ2012]
 - • ↑ success rate with heterogeneous emphysema, lobar exclusion (with complete lobar fissure) and -ve collateral ventilation
 - Adverse events [Sciurba FC NEJM 2010; Herth FJ ERJ2012; Ninane V ERJ 2012]
 - EBV-related events: pneumothorax > 7 days (2.2%),
 "distal" pneumonia (1.9%); haemoptysis (0.6%)

Figure 5 Algorithm for bronchoscopic lung volume reduction in patients with severe emphysema. BLVR, biological lung volume reduction; FEV₁, forced expiratory volume in 1 s; HRCT, high-resolution CT; LVRC, lung volume reduction coil; RV, residual volume.

Herth FJ et al. Respiration 2011 (Sealant) Snell G et al. ERJ 2012 (thermal vapour ablation) Shah PL et al. Lancet Resp 2013 (endobronchial coils)

EBV for persistent air leaks in pneumothorax

EBV in persistent air leaks: the evidence

- Mostly case series or reports
- Shorten LOS
- Relatively safe and non-invasive
- Air leaks reduced or resolved in >90% (Travaline JM et al. Chest 2009)
 - Mean time from EBV placement to drain removal: 21 days (median 7.5; IQR 3-29)

Treatment of persistent air leakage with endobronchial one-way valves

Marco Anile, MD, Federico Venuta, MD, Tiziano De Giacomo, MD, Erino Angelo Rendina, MD, Daniele Diso, MD, Francesco Pugliese, MD, Franco Ruberto, MD, and Giorgio Furio Coloni, MD, Rome, Italy

The use of endobronchial valve device to eliminate air leak

James I. Fann^{a,c,*}, Gerald J. Berry^b, Thomas A. Burdon^{a,c}

^aDepartment of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA ^bDepartment of Pathology, Stanford University School of Medicine, Stanford, CA, USA ^cThe Section of Cardiothoracic Surgery, Palo Alto Veterans Affairs HCS, Palo Alto, CA, USA

CHEST

Original Research

INTERVENTIONAL PULMONOLOGY

Treatment of Persistent Pulmonary Air Leaks Using Endobronchial Valves

John M. Travaline, MD, FCCP; Robert J. McKenna, Jr, MD, FCCP; Tiziano De Giacomo, MD; Federico Venuta, MD, FCCP; Steven R. Hazelrigg, MD, FCCP; Mark Boomer, MD; and Gerard J. Criner, MD, FCCP; for the Endobronchial Valve for Persistent Air Leak Group*

Closure of a Bronchopleural Fistula Using Bronchoscopic Placement of an Endobronchial Valve Designed for the Treatment of Emphysema*

J. Scott Ferguson, MD, FCCP; Kimberly Sprenger, BSN; and Timothy Van Natta, MD

Airway Smooth Muscle (ASM) on Asthma

Normal Airway

Asthma Attack

Bronchial Thermoplasty: Actions and effects

Reduces Airway Smooth Muscle

Reduces Bronchoconstriction

Reduces Asthma Exacerbations

Improves Asthma Quality of Life

Bronchial Thermoplasty : Catheter and RF Controller

 Catheter – a flexible tube with an expandable wire array at the tip (introduced through a standard bronchoscope) Radiofrequency (RF)
 Controller – supplies energy via the Catheter to heat the airway wall

Clinical Studies

AIR = Asthma Intervention Research Study RISA = Research in Severe Asthma Study

Clinical Outcomes

Improved asthma-related quality of life

Improved clinical outcomes:

- 84% ↓ ER visits
- δ
 δ
 δ
 3% ↓ hospitalization

Castro et al. AJRCCM 2010 Cox et al. NEJM 2007 Pavord et al. AJRCCM 2007

- Slightly short-term asthma related morbidities
- No device-related serious adverse events or deaths

Castro, Am J Respir Crit Care Med. 2010;181(2):116-24

No complications + stable lung fx at 5 years

Thomson NC et al. BMC Pul Med 2011 Pavord ID et al. AJRCCM 2011

Potential therapeutic option in severe asthmatics

Step 1	Step 2	Step 3	Step		Step 5
	Asthma	a education environmental	l control		
As needed rapid-acting ദ ₂ -agonist		As needed rapid-	-acting ß ₂ -agonist		_
Controller options***	Select One	Select One	Add one of	more	Add one or both
	Low-dose inhaled ICS*	Low-dose ICS plus long-acting ß ₂ -agonist	Medium or hig plus long-acting	-dose ICS ß ₂ -agonist	Oral glucocorticosteroid (lowest dose)
	Leukotriene modifier**	Medium-or high-dose ICS	Leukotriene	nodifier	Anti-IgE treatment
		Low-dose ICS plus leukotriene modifier	Sustained r thephyl	elease ne	
		Low-dose ICS plus sustained release thephylline			
ICS = inhaled glucocorticosteroi * = Receptor antagonist or synth ** = Preferred controller options	ds esis inhibitors are shown in shaded boxes				

Interventional Pulmonology: Conclusions

- A growing field
 - From airway to pleura
 - From diagnostic to therapeutic
- Attractive alternatives for patients with borderline performance status
 - $\bullet \downarrow$ invasiveness
 - ♦ ↓ risks
 - \diamond \downarrow hospitalization

Acknowledgments

- Or. David CL Lam (QMH)
 Or.
 Or.
- Or. WL Law (QEH)
 Or.
 O
- Members of the Special Interest Group of Bronchology and Interventional Pulmonology of HKTS/ACCP (HK & Macau Chapter)

THANK YOU!