The Application of Molecular Genetics in Sudden Death and Near Death – the Social and Medico-legal Impacts

HA Convention 2010 Dr Liz YP Yuen Department of Chemical Pathology Prince of Wales Hospital

SUDDEN DEATH AND CARDIAC DISEASES

Definition

Sudden death -

- "an unexpected natural death within a short time period, generally 1 hour or less from the onset of symptoms" or
- "a non-witnessed death discovered within 24 hours in someone without prior symptoms or any prior condition that would appear fatal".

Sudden Death

- Incidence and causes are age-dependent.
- Coronary artery disease in adults > 35y.
- Accounts for 5% of all deaths in children and adolescents with an incidence of 1.5 8 per 100,000 patient-year.

Figure 1 Causes of sudden cardiac death in young people

Heritable causes of sudden cardiac death

Structural heart defects

- Hypertrophic cardiomyopathies (HCM)
- Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Cardiac electrical disorders

- Long QT syndromes (LQTS)
- Catecholaminergic
 polymorphic ventricular
 tachycardia (CPVT)
- Brugada syndrome

Hypertrophic Cardiomyopathy

Sarcomere

HCM

- * Account for $\sim 1/3$ of sudden deaths in competitive athletes in the US.
- \$\int 55\%-70\% attributable to one of the 12 sarcomere genes.
- Autosomal dominant with age-related penetrance
- Existing evidence: diagnosis and family screening
- Little prognostic value, cannot predict age of onset and disease severity.

Locus Name	Gene Symbol	Protein Name	% of HCM Caused by Mutations in This Gene				
CMH1	МҮН7	Myosin heavy chain, cardiac muscle beta isoform	40%				
СМН4	мүврс3	Myosin-binding protein C, cardiac-type	40%				
СМН2	TNNT2	Troponin T, cardiac muscle 5%					
СМН7	TNNI3	Troponin I, cardiac muscle 5%					
СМН3	TPM1	Tropomyosin 1 alpha chain	2%				
СМН10	MYL2	Myosin regulatory light chain 2, ventricular/cardiac unknown					
СМН8	MYL3	Myosin light polypeptide 3	1%				
M	ACTC1	Actin, alpha cardiac muscle 1	Unknown				
	CSRP3	Cysteine and glycine-rich protein 3, muscle LIM protein	Unknown				
СМН9	IH9 TTN Titin						
1	МҮН6	Myosin heavy chain, cardiac muscle alpha isoform					
1//	TCAP	Telothonin					
Other genes implicated in HCM							
	TNNC1	Troponin C, slow skeletal and cardiac muscles	Unknown				

This pedigree

- Familial disease
- Dominant inheritance
- Phenotypes: childhood-onset HCM, end-stage heart failure, (sudden death)
- At risk asymptomatic family members

Clinical vs Genetics Dx

Clinical Screening

- History, physical exam, echocardiography, ECG, etc.
- Always indicated in symptomatic individuals regardless of age.
- A normal baseline echocardiogram and ECG does not rule out HCM in asymptomatic relatives, particularly in children or young adults.
- Require screening and longitudinal FU throughout life.

Genetics vs Clinical Dx

Genetic Diagnosis

- Testing of at-risk asymptomatic relatives is possible if the disease-causing mutation in the proband is known.
- Genetically heterogeneous
- Mutation detection rate 55-70%
- A negative test result can provide reassurance that the person is not at risk of developing HCM and thus obviate unnecessary screening.

- •III:1 symptomatic
- •II:3 and II:4 50% risk; require life-long follow-up and avoidance of risk
- •III:2 50% risk; require life-long follow-up and avoidance of risk
- •III:3 25% risk; require life-long follow-up and avoidance of risk

Ш

Ш

M/20

failure

F/54

F/6

Genetic Diagnosis

- * Target 1: **MYH7**
- The beta heavy chain subunit of human muscle myosin
- Chromosome 14q12
- 38 coding exons
- ~300 known mutations throughout the gene, majority being missense / nonsense mutations.
- Account for ~40% familial HCM in Chinese

Sequencing results

- c.2155C>T p.Arg719Trp in exon 19
- First reported in 1994

Clinical screening

- •III:1 symptomatic
- •II:3 50% risk
- •II:4 50% risk
- •III:2 50% risk
- •III:3 25% risk

Genetic screening

- •III:1 same
- •II:3 not at risk
- •II:4 Dx confirmed
- •III:2 50% risk
- •III:3 50% risk

Cardiac Electrical Disorders

Cardiac electrical disorders

- Cardiac channelopathies
- No detectable structural abnormalities

- Long QT syndromes (LQTS)
- Catecholaminergic polymorphic ventricular tachycardia (CPVT)
- Brugada syndrome (BrS)

Congenital LQTS

- Autosomal dominant with reduced penetrance
- Genetically heterogeneous
- * 75% attributable to
 - * KCNQ1 (LQT1)
 - * KCNH2 (LQT2)
 - * SCN5A (LQT3)
 - * KCNE1 (LQT5)
 - * KCNE2 (LQT6)

LQTS

	LQT1	LQT2	LQT3
Gene / Locus	KCNQ1	KCNH2	SCN5A
	11p15.5	7q35-q36	3p21
Coding exons	16	15	27
Arrhythmogenic triggers	Physical exertionSwimming	Auditory stimuli (e.g. alarm clock)Post-partum	• Sleeping
		period	
Response to β- blocker	++++	+++	+/-

Identification of asymptomatic LQTS carriers

- Clinical criteria are insensitive
 - * A Schwartz score of \geq 4 (i.e. a strong probability of LQTS) had a sensitivity of 38%.
 - * Clinical assessment failed to identify 40% of the genetically affected family members of 310 genotyped probands.
- Patients with "concealed" LQTS have a 10% risk of cardiac events by age 40 years if left untreated.
- Early identification
 - * Preventive life-style modifications (e.g. avoidance of strenuous exercise and extreme emotional stress)
 - Prophylactic treatment.
- Genetic test ⇒ gold standard in family screening

CPVT

- Catecholaminergic polymorphic ventricular tachycardia
- Syncope and sudden death during physical exertion or emotion (Catecholamine-induced bidirectional VT ⇒ polymorphic VT and VF).
- Mean age of onset 7-9yrs
- * Adrenaline provocation test / Exercise stress test
- * RYR2 autosomal dominant with high penetrance, 50-55%
- * CASQ2 autosomal recessive, 1-2%

CPVT

Management

- * Avoid strenuous exercise / acute emotion
- * β-blockers
- * Implantable cardioverter defibrillator
- * FU by cardiologist
- * Screening of family members at risk

F/14
Good past health
Sudden collapse after boarding a
bus. Regained consciousness
shortly and collapsed again.
A similar episode 9 months earlier
when quarrelling with a friend.

Baseline ECG - NAD

Echocardiogram – no structural heart disease

MR coronary angiogram – no anomalies of coronary arteries CT brain – hypoxic brain damage

PVCs, polymorphic VT and non-sustained bidirectional VT when the patient was agitated.

Adrenaline provocation test

- Family history –ve
- RYR2 mutation analysis
 - * 104 exons
 - * Critical regions
- Heterozygous p.G3946S in exon 88
- Both parents were negative
- De novo mutation
- Spastic paraplegia
- Non-communicable
- Bed-ridden

Molecular Autopsy

- Postmortem genetic analysis
- First report in 1999
- * KCNQ1 mutation (LQT1) identified in a 19-yr-old woman who died after a near-drowning.

Definitive Dx for at least 60 relatives

Prophylactic therapy in mutation carriers

Figure 2

Summary of the Yield of Postmortem Cardiac Channel Genetic Testing in Cases of Autopsy-Negative SUD

Depicted is a pie chart summarizing the frequency and distribution of cardiac channel genotypes detected after a molecular autopsy of 49 medical examiner/coroner-referred cases of sudden unexplained death (SUD).

Cost-effectiveness analysis

- Commercial LQTS genetic testing available in the US (US\$5400).
- Symptomatic index cases who received a definite or inconclusive clinical diagnostic scores for LQTS.

	LQTS genetic testing	BRCA1/2 screening and oophorectomy	Mammography screening
Cost per year of life saved	\$2,500	\$3,900-\$1,600,000 for high- and average-risk women	\$21,400-\$117,680 for women ages 50-69yrs and 70-79yrs respectively.

- * "More accurately diagnose and treat affected individuals."
- "Clinicians can make more informed judgement about treatment."
- The cost and benefits of testing at-risk family members not included in the estimation ⇒ likely to be more favourable.

Challenges

- Genetic studies are expensive (time, manpower).
- Interpretation of results may not be straight-forward.
- How to prioritize patients?
- Genetic counselling

SUDDEN INFANT DEATH AND INBORN ERRORS OF METABOLISM

Fatty Acid Oxidation

CACT deficiency

- The 1st case in Hong Kong diagnosed in 2003
- M/3D, sudden death in hospital
- ~20 reported cases sudden neonatal death is the commonest presentation.
- A lot of difficulties in the investigation process.

TABLE 1. Clinical features of the three patients diagnosed with carnitine-acylcarnitine translocase deficiency

Patient No.	Sex	Gestation (weeks)	Birth weight (kg)	Consanguinity	Feeding	Time at presentation (hours)	Initial symptoms	Survived
I	М	38.4	2.41	No	Formula	41	Sudden cardiac arrest	No
2	М	35.6	2.71	No	Breast-feeding	32	Sudden cardiac arrest	Yes
3	F	37.4	2.3	No	Formula	28	Cardiorespiratory failure	No

TABLE 2. Laboratory findings of patients with carnitine-acylcarnitine translocase deficiency at presentation and autopsy findings

Patient No.	Initial plasma glucose (mmol/L)	Maximum ammonia level (µmol/L)	Long-chain acylcarnitine profiles	Dicarboxylic acid in urine	Lactate (mmol/L)	Autopsy
- 1	Not done	Not done	Not done	Raised	Not done	Steatosis in myocardium and hepatocytes
2	1.5	455	Raised	Raised	5.2	Not applicable
3	1.3	216	Raised	Raised	8.9	Not done

Founder mutation in CACT

- * CACT IVS2-10T>G
- * Homozygous in all 3 patients.
- Reported previously in 2 Chinese parents of CACT patients (UK and USA).
- * Allow quick target mutation analysis.

Challenges

- Slow development in paediatric biochemical tests.
- Turnaround time cannot meet urgent need.
- Peri-mortem and post-mortem sampling protocol for IEM investigation.
- Genetic information alter the investigation protocol.
- Accumulation of expertise and sharing of clinical experience.

UNEXPECTED DEATHS CAUSED BY INBORN ERRORS OF METABOLISM

GAII

- * M/14
- Presented to AED twice within 10hrs.
- Acute deterioration after 9hrs of observation in AED.
- Died 38hrs after admission.
- No biological samples saved for metabolic investigation.
- Retrospective family history twin sister died of unknown cause in infancy.

Urine: 1 glutaric, 2-Ohglutaric, ethymalonic, isovalerylglycine,

hexanoylglycine

Plasma: 1 C4 to C16 acylcarnitines

⇒ Glutaric aciduria type II

- 3 known genes for GAII
 - * ETFA
 - * ETFB
 - * EFTDH

- 2 Novel mutations in ETFA
 - * p.V618F (paternal allele)
 - * p.Q262R (maternal allele)

Challenges

- GAII a relatively common IEM in Hong Kong
- Clinical suspicion
- An inquest was held for this patient
 - * TAT of metabolic investigation.
 - * More comprehensive newborn screening program.

Conclusion

- Increasing knowledge of genetic basis of heritable disorders which can cause sudden death / significant mortality and morbidity.
- Increasing evidence which support of introduction of genetic testing into clinical practice.
- 3. Current situation in Hong Kong
 - a) No lack of clinical requests lack of clinical guidelines
 - b) Piecemeal development lack of central policy
 - Better support for up-stream and front-line investigations required.

Acknowledgement

Princess Margaret Hospital

- Dr Albert Chan
- Dr Chloe Mak
- Dr Hencher Lee
- Dr Carol Siu
- Dr NS Mok
- Dr KY Chan
- Dr CC Shek
- Dr SY Lee

HKU Pathology

Prof CW Lam

Grantham Hospital Cardiac Medicine Unit

Dr Katherine Fan

THANK YOU

References

- Tester DJ, Ackerman M. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol 2007;49:240-6.
- Wedekind H et al. Cardiac arrhythmias and sudden death in infancy: implication for the medicolegal investigation. Int J Legal Med 2007;121:245-257.
- Tester DJ, Ackerman M. The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol 2006;21:166-172.
- Lam CW et al. Ethnic-specific splicing mutation of the carnitine-acylcanitine translocase gene in a Chinese neonate presenting with sudden unexpected death. Chin Med J (Engl) 2003;116:1110-1112.
- Lee RSY et al. carnitine-acylcanitine translocase deficiency in three neonates presenting with rapid deterioration and cardiac arrest. Hong Kong Med J 2007;13:66-68.
- Philips KA et al. Cost-effectiveness analysis of genetic testing for familial long QT syndrome in symptomatic index cases. Heart Rhythm 2005;2:1294-1300.
- Bai et al. Yield of genetic screening in inherited cardiac channelopathies. How to prioritize access to genetic testing. Circ Arrhythmia Electrophysiol 2009;2:6-15.
- Lee et al. Role of postmortem genetic testing demonstrated in a case of glutaric aciduria type II. Diag Mol Pathol 2010 (in press).