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This chapter is not intended to replace statistical reference books. Its objective is 
solely to assist those involved in cancer registration to understand the calculations 
necessary for the presentation of their data. For population-based registries this will 
be as incidence rates. The methods required for using these rates in comparative 
studies-for example, comparing incidence rates from different time periods or from 
different geographical areas-are also described. Where incidence rates cannot be 
calculated, registry results must be presented as proportions, and analogous methods 
for such registries are also included. 

PART I. METHODS FOR THE STUDY OF INCIDENCE 

Dejnitions 
The incidence rate 

The major concern of population-based cancer registries will be the calculation of 
cancer incidence rates and their use to study the risk of individual cancers in the 
registry area compared to elsewhere, or to compare different subgroups of the 
population within the registry area itself (see Chapter 3). 

Incidence expresses the number of new cases of cancer which occur in a defined 
population of disease-free individuals, and the incidence rate is the number of such 
events in a specified period of time. Thus: 

Number of new cases of disease 
Incidence rate = in a period of time 

Population at risk 

This measure provides a direct estimate of the probability or risk of illness, and is 
of fundamental importance in epidemiological studies. 

Since incidence rates relate to a period of time, it is necessary to define the exact 
date of onset of a new case of disease. For the cancer registry this is the incidence date 
(Chapter 6, item 16). Although this does not correspond to the actual time of onset of a 
cancer, other possibilities are less easy to define in a consistent manner-for example, 
the date of onset of symptoms, date of entry to hospital, or the date of treatment. 

Period of observation 
The true instantaneous risk of disease is given by the incidence rate for an 
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infinitely short time period, the 'instantaneous' rate or 'force of morbidity'. With 
longer time periods the population-at-risk becomes less clearly defined (owing to 
births, deaths, migrations), and the rate itself may be varying with time. In practice, 
cancer in human populations is a relatively rare event and to study it quite large 
populations must be observed over a period of several years. Incidence rates are 
conventionally expressed in terms of annual rates (i.e., per year), and when data are 
collected over several years the denominator is converted to an estimate of person- 
years of observation. 

Population at risk 
In epidemiological cohort studies, relatively small populations of individuals on 

whom information has been collected about the presence or absence of risk factors are 
followed up. There will inevitably be withdrawal of individuals from the group under 
study (owing to death, migration, inability to trace), and often new individuals will be 
added to the cohort. 

The result is that individuals are under observation and at risk of disease for 
varying periods of time; the denominator for the incidence rate is thus calculated by 
summing for each individual the person-years which are contributed. 

Cancer registries are usually involved in calculating incidence rates for entire 
populations, and the denominator for such rates cannot be derived from a knowledge 
of each individual's contribution to the population at risk. This is therefore generally 
approximated by the mid-year population (or the average of the population at the 
beginning and end of the year or period), which is obtained from a census department. 
The variance of the estimate of the incidence rate is determined by the number of 
cases used in the numerator of the rate; for this reason it is usual to accumulate several 
years of observation, and to calculate the average annual rate. The denominator in 
such cases is again estimated as person-years, ideally by summing up the mid-year 
population estimates for each of the years under consideration. When these are 
unavailable, the less accurate solution of using the population size from one or two 
points during the time period to estimate person-years has to be used, an 
approximation that is likely to be reasonable providing no rapid or irregular changes 
in population structure are taking place. Examples, illustrating estimates of person- 
years of observation with differing availabilities of population data, are shown in 
Table 1 .  Conventionally, incidence rates of cancer are expressed as cases per 100 000 
person-years, since this avoids the use of small decimals. For childhood cancers, the 
rate is often expressed per million. 

When population estimates are used to approximate person-years at risk, the 
denominator of the rate will include a few persons who are not truly at risk. 
Fortunately for the study of incidence rates of particular cancers, this makes little 
difference, since the number of persons in the population who are alive and already 
have a cancer of a specific site is relatively small. However, if a substantial part of the 
population is genuinely not at risk of the disease, it should be excluded from the 
denominator. An obvious example is to exclude the opposite sex from the 
denominator of rates for sex-specific cancers, and incidence rates for uterine cancer 
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Table 1. Calculation of person-years at risk, with different availabilities of population data 
using data for the age group 45-49 for males in Scotland from 1980 to 1984 

Year 1. Each yeaf 2.  id-pointb 3. Irregular pointsC 

a Method 1. Person-years = 140 800 + 142 700 + 140 600 + 141 200 + 141 500 = 706 800 
Method 2. Person-years = 140 600 x 5 = 703 000 
Method 3. Decrease in population, year 2 to year 4 = 1500; annual decrease = 150012 = 750; person- 

years = (142 700 + 750) + 142 700 + (142 700-750) + 141 200 + (141 200-750) = 709 750 

are better calculated only for women with a uterus (quite a large proportion of middle- 
aged women may have had a hysterectomy)-especially when comparisons are being 
made for different time periods or different locations where the frequency of 
hysterectomy may vary (Lyon & Gardner, 1977; Parkin et al., 1985a). 

Calculation of rates 

Many indices have been developed to express disease occurrence in a community. 
These have been clearly outlined by Inskip and her colleagues (Inskip et al., 1983) and 
other sources of information also provide good discussions of this subject (Armitage, 
1971; Armitage & Berry, 1987; Breslow & Day, 1980, 1987; Doll & Cook, 1967; 
Fleiss, 1981; MacMahon & Pugh, 1970). This chapter will concentrate on those 
methods which are generally most appropriate for cancer registration workers and 
will provide illustrative, worked examples. Whenever possible the example has been 
based on incidence data on lung cancer in males in Scotland. While an attempt has 
been made to enter results of as many of the intermediate steps on the calculation as 
possible, it has not been feasible to enter them all. Also, repetition of some of the 
intermediate steps may produce slightly different results owing to different degrees of 
precision used in the calculations and rounding. Thus the reader who attempts all the 
recalculations should get the same final result but should expect some minor 
imprecision in the intermediate results presented in the text. 

Crude (all-ages) and age-specific rates 

Suppose that there are A age groups for which the number of cases and the 
corresponding person-years of risk can be assessed. Frequently, the number of groups 
is 18 (A= 18) and the categories used are 0-4,5-9,10-14,15-19. . .80-84and 85 and 
over (85+). However, variations of classification are often used, for example by 
separating children aged less than one year (0) from those aged between 1 and 4 (1-4) 
or by curtailing age classification at 75, i.e., having age classes up to 70-74 and 75 +. 
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Let us denote by ri to be the number of cases which have occurred in the ith age 
class. If all cases are of known age, then the total number of cases R can be written as 

Similarly, denoting by ni the person-years of observation in the ith age class during 
the same period of time as cases were counted, the total person-years of observation N 
can be written as 

The crude, all-ages rate per 100 000 can be easily calculated by dividing the total 
number of cases ( R )  by the total number of person-years of observation ( N )  and 
multiplying the result by 100 000. 

R 
Crude rate = C = - x 100 000 ( 1  1.3) 

N 

i.e., when all cases are of known age, 
A 

The age-specific rate for age class i, which we denote as a,, can also be simply 
calculated as a rate per 100 000 by dividing the number of cases in the age-class (r,) by 
the corresponding person-years of observation (n,) and multiplying the result by 
100 000. Thus, 

One of the most frequently occurring problems in cancer epidemiology involves 
comparison of incidence rates for a particular cancer between two different 
populations, or for the same population over time. Comparison of simple crude rates 
can frequently give a false picture because of differences in the age structure of the 
populations to be compared. If one population is on average younger than the other, 
then even if the age-specific rates were the same in both populations, more cases 
would appear in the older population than in the younger. Notice from Table 2 how 
quickly the age-specific rates increase with age. 

Thus, when comparing cancer levels between two areas, or when investigating the 
pattern of cancer over time for the same area, it is important to allow for the changing 
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or differing population age-structure. This is accomplished by age-standardization. It 
must be emphasized, however, that the dzficulty in comparing rates between populations 
with dzflerent age distributions can be overcome completely only if comparisons are limited 
to individual age-specijc rates (Doll & Smith, 1982). This point cannot be stressed too 
much. A summary measure such as that produced by an age-adjustment technique is 
not a replacement for examination of age-specific rates. However, it is very useful, 
particularly when comparing many sets of incidence rates, to have available a 
summary measure of the age-standardized rate. 

There are two methods of age-standardization in widespread use which are known 
as the direct and indirect methods. The direct method is described first, since it has 
considerable interpretative advantages over the indirect method (for a full discussion, 
see, for example, Rothman, 1986), and is generally to be preferred whenever possible. 
(Further information is given in Breslow & Day (1987), pp. 72-75.) 

Age-standardization-direct method 

An age-standardized rate is the theoretical rate which would have occurred if the 
observed age-specific rates applied in a reference population: this population is 
commonly referred to as the Standard Population. 

The populations in each age class of the Standard Population are known as the 
weights to be used in the standardization process. Many possible sets of weights, wi, 
can be used. Use of different sets of weights (i.e., use of different standard 
populations) will produce different values for the standardized rate. The most 
frequently used is the World Standard Population (see Table 3), modified by Doll et 

Table 3. The world standard population 
(After Doll et a[., 1966) 

Age class index (i) Age class Population (wi)  
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al. (1966) from that proposed by Segi (1960) and used in the published volumes of the 
series Cancer Incidence in Five Continents. Its widespread use greatly facilitates the 
comparison of cancer levels between areas. 

By denoting wi as the population present in the ith age class of the Standard 
Population, where, as above, i = 1, 2, ... A and letting ai again represent the age- 
specific rate in the ith age class, the age-standardized rate (ASR) is calculated from 

i = l  
ASR = A 

Cases of cancer of unknown age may be included in a series. This means that 
equation (1 1.1) is no longer valid, since the total number of cases (R) is greater than 
the sum of cases in individual age groups (C rJ, so that the ASR, derived from age- 
specific rates (equation 11.5), will be an underestimate of the true value. 

Doll and Smith (1982) propose that a correction is applied, by multiplying the 
ASR (calculated as in 1 1.6) by 

Use this adjustment implies that the distribution by age of the cases of unknown 
age is the same as that for cases of known age. Though this assumption may often not 
be justified, because it is more often among the elderly that age is -not recorded, the 
effect is not usually large, as long as the proportion of cases of unknown age is small 
(<5%). 

Truncated rates 
Doll and Cook (1967) proposed calculation of rates over the truncated age-range 

35-64, mainly because of doubts about the accuracy of age-specific rates in the elderly 
when diagnosis and recording of cancer may be much less certain. Several authors 
continue to present data using truncated rates, although it is debatable whether the 
extra accuracy .offsets the somewhat increased complexity of calculations and 
interpretation, and the wastage of much collected data. In effect, the calculation 
merely limits consideration to part of the data contained in Table 4. 

The truncated age-standardized rate (TASR) can be written as follows 
13 

C ai wi 
i = 8  

TASR = 
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It is clear that expression (11.7) is a special case of expression (1 1.6) with 
summation starting at age class 8 (corresponding to 35-39) and finishing with age 
class 13 (corresponding to 60-64). Similarly, for comparison of incidence rates in 
childhood, the truncated age range 0-14 has been used, with the appropriate portion 
of the standard population (Parkin et al., 1988). 

Standard error of age-standardized rates-direct method 
An age-standardized incidence rate calculated from real data is taken to be, in 

statistical theory, an estimate of some true parameter value (which could be known 
only if the units of observation were infinitely large). It is usual to present, therefore, 
some measure of precision of the estimated rate, such as the standard error of the rate. 

The standard error can also be used to calculate confidence intervals for the rate, 
which are intuitively rather easier to interpret. The 95% confidence interval 
represents a range of values within which it is 95% certain that the true value of the 
incidence rate lies (that is, only five estimates out of 100 would have confidence limits 
that did not include the true value). Alternatively, 99% confidence intervals may be 
presented which, because they imply a greater degree of certainty, mean that their 
range will be wider than the 95% interval. 

In general, the (100(1 - a)) % confidence interval of an age-standardized rate, 
ASR, with standard error s.e.(ASR) can be expressed as: 

ASR f Za12 x (s.e.(ASR)) (1 1.8) 

where ZaI2 is a standardized normal deviate (see Armitage and Berry (1987) for 
discussion of general principles). For example, the 95% confidence interval can be 
calculated by selecting ZaI, as 1.96, the 97.5 percentile of the Normal distribution. For 
a 99% confidence interval, Za12 is 2.58. 

There are two methods for calculating the standard error of a directly age-adjusted 
rate, the binomial and the Poisson approximation, which are illustrated below. They 
give similar results, and either can be used. 

The age-standardized incidence rate (ASR) can be computed from formula (1 I .6). 
The variance of the ASR can be shown to be 

A 

1 [ai 4(1OO 000 - ai)/ni] 

Var (ASK) = 
/ A  l 2  

The standard error of ASR (s.e.(ASR)) can be simply calculated as 

The 95% confidence interval for the ASR calculated in Example 2 is given by 
formula (1 1.8) : 

ASR + Za12 x (s.e.(ASR)) = 90.62 f 1.96 x 0.73 
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An alternative expression can be obtained, as outlined by Armitage and Berry 
(1987), when the a, are small (as is generally the case) by making a Poisson 
approximation to the binomial variance of the a,. This results in an expression for the 
variance of the age-standardized rate (Var (ASR)) 

A 

C (a, 4 x 100 OOO/nJ 
i =  1 

Var (ASR) = 
/ A \ 2  

and the standard error of the age-standardized rate (s.e.(ASR)) is the square root of 
the variance, as before (expression 1 1.10). 

Comparison of two age-standardized rates calculated by the direct method 
It is frequently of interest to study the ratio of directly age-standardized rates 

from different population groups, for example from two different areas, or ethnic 
groups, or from different time periods. The ratio between two directly age- 
standardized rates, ASR,/ASR2, is called the standardized rate ratio (SRR), and 
represents the relative risk of disease in population 1 compared to population 2. It is 
usual to calculate also the statistical significance of the standardized rate ratio (as an 
indication of whether the observed ratio is significantly different from unity). Several 
methods are available for calculating the exact confidence interval of the 
standardized rate ratio (Breslow & Day, 1987 (p. 64); Rothrnan, 1986; Checkoway et 
al., 1989); an approximation may be obtained with the following formula (Smith, 
1987) : 

(ASR, - ASR2) 
where X = 

J(S.~.(ASR,)~ + S . ~ . ( A S R ~ ) ~ )  

and Za,,=1.96(atthe95%level) 

or . ZaI2 = 2.58 (at the 99% level) 

If this interval includes 1.0, the standardized rates ASR, and ASR2 are not 
significantly different (at the 5% level if ZaI2 = 1.96 has been used, or at the 1% level if 
ZaI2 = 2.58 has been used). 

When the comparisons involve age-standardized rates from many subpopula- 
tions, a logical way to proceed is to compare the standardized rate for each 
subpopulation with that for the population as a whole, instead of undertaking all 
possible paired comparisons. For example, in preparing the cancer incidence atlas of 
Scotland, Kemp et al. (1 985) obtained numerator and denominator information for 56 
local authority districts of Scotland covering the six-year period 1975-80. For each 
site of cancer and separately for each sex, an average, annual, age-standardized 
incidence rate per 100 000 person-years was calculated by the direct method using the 
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World Standard Population (as described above). Similarly, the standard error was 
calculated providing for each region and for Scotland as a whole a summary 
comparison statistic. To avoid the effect of comparing heavily populated districts 
(e.g., Glasgow, with 17% of the total population of Scotland), with the rate for 
Scotland, which is itself affected by their contribution, the rate for each district was 
compared with the rate in the rest of Scotland (e.g., Glasgow with Scotland-minus- 
Glasgow). The method of comparison was that for directly age-standardized rates 
described above and the ratios were reported as: significantly high at 1% level (+ +); 
(2) significantly high at 5% level (+); (3) not significantly high or low; (4) 
significantly low at 5% level (-); or (5) significantly low at 1% level (- -). 

Table 8 lists lung cancer incidence rates from the atlas of Scotland (Kemp et al., 
1985). Among males, the highest rate reported was from district 33--Glasgow City 
(130.6 per 100 000, standard error 2.01) which was significantly different at the 1% 
level from the rate for the rest of Scotland. Neighbouring Inverclyde (109.9,5.35) also 
reported a significantly high rate at this level of statistical significance, as did 
Edinburgh City (103.2, 2.32). It is worth noting the effect of population size on 
statistical significance levels. Although Edinburgh City ranked only seventh in terms 
of male lung cancer incidence rates, it has a large population, and was one of only 
thee  districts in the highest significance group. 

A similar pattern is exhibited in females, with Glasgow City (33.3, 0.90) having 
the highest rate. However, the second highest rate was reported from Badenoch 
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Table 8. Indicence rates of lung cancer in selected districts of Scotland, 1975-80 
(From Kemp et al., 1985) 

District Male Female 

No. Name Cases ASR SE Rank Cases ASR SE Rank 

Badenoch 
Edinburgh 
Tweeddale 
Glasgow 
Cumbernauld 
Inverclyde 
Orkney 
Shetland 

All Scotland 

ASR, Age standardized rate per 100 000 (direct method, world standard population) 
SE, Standard error 

++, Significantly higher than for rest of Scotland, p < 0.01 
--, Significantly lower than for rest of Scotland, p C0.01 
-, Significantly lower than for rest of Scotland, pCO.05 

(3 1.8,9.36), which did not differ significantly from the rest of Scotland, because of the 
sparse population of the latter district. 

Testing for trend in age-standardized rates 
As an extension to the testing of differences between pairs of age-standardized 

rates described above, sometimes a set of age-standardized rates is available from 
populations which are ordered according to some sort of scale. The categories of this 
scale may be related to the degree of exposure, to an etiological factor or simply to 
time. simple examples are age-standardized rates from different time periods or from 
different socioeconomic classes. One might also order sets of age-standardized rates 
from different geographical areas (provinces, perhaps) according to, for example, the 
average rainfall, altitude, or level of atmospheric pollution. 

In these circumstances, the investigator is interested not only in comparing pairs 
of age-standardized rates, but also in whether the incidence rates follow some sort of 
trend in relation to the exposure categories. Fitting a straight line regression equation 
is the simplest method of expressing a linear trend. 

As an example, the annual age-standardized incidence rates of lung cancer in 
males in Scotland will be used for the years 1960-70, inclusive. To estimate the 
temporal trend, the actual year can be used to order the rates; however, to simplify the 
calculations, 1959 can be subtracted from each year, so that 1960 becomes 1, 1961 
becomes 2, . . . and 1970 becomes 11. The same results for the trend can be obtained 
using either set of values. 
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In simple regression1 there are two kinds of variable: the predictor variable (in 
this case year, denoted by x) and the outcome variable (in this case the age- 
standardized rate, denoted by y); the linear regression equation can be written as 

y = a + bx (11.13) 

where y = age-standardized lung cancer incidence rate 

x = year number (year minus 1959) 
a = intercept 

b = slope of regression line 

Expressions for a, b, and the corresponding standard errors are derived in Bland 
(1987). For example, 

which can be rewritten as 

where n = number of pairs of observations 
- 

and y = C y/n and x = x/n 

The standard error of the slope, b, is given by 

The intercept, a, can be calculated from 

a = F - b T  

On many occasions weighted regression may be more appropriate, where each point does not contribute 
the same amount of information to fitting the regression line. It is common to use weights wi = l/Var (yi): 
see Armitage and Berry (1987). 
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The calculated slope (b) indicates the average increase in the age-standardized 
incidence rate with each unit increase in the predictor variable, i.e., in this example, 
the average increase from one year to the next. The standard error of the slope (s.e.(b)) 
can be used to calculate confidence intervals for the slope, in a manner analogous to 
that using expression (1 1.8). 

A formal test that the slope is significantly different from 1.0 can be made by 
calculating of the ratio of the slope to its standard error (b/s.e.(b)), which will follow a 
t-distribution with n - 2 degrees of freedom. (See Armitage and Berry (1987) for 
further information.) 

Age-standardization-indirect method 
An alternative, and frequently used, method of age-standardization is commonly 

referred to as indirect age-standardization. It is convenient to think of this method in 
terms of a comparison between observed and expected numbers of cases. The 
expected number of cases is calculated by applying a standard set of age-specific rates 
(a,) to the population of interest: 

A A 

where e,, the number of cases expected in age class i, is the product of the 'standard 
rate' and the number of persons in age class i in the population of interest. 

The standardized ratio (M) can now be calculated by comparing the observed 
number of cases (1 ri) with that expected 

This is generally expressed as a percentage by multiplying by 100. When applied 
to incidence data it is commonly known as the standardized incidence ratio (SIR) : 
when applied to mortality data it is known as the standardized mortality ratio (SMR). 

Standard error of standardized ratio 
The standardized ratio (M) is derived from formula (11.18) and its variance, 

Var (M), is given by 

i = l  
Var (M) = 

I A , 2  
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and the standard error of the indirect ratio, s.e.(M), is the square root of the variance, 
as before (expression 1 1.10). 

i =  1 

Vandenbroucke (1982) has proposed a short-cut method for calculating the 
(100(1 - a))% confidence interval of a standardized ratio, involving a two-step 
procedure. First, the lower and upper limits for the observed number of events are 
calculated : 

Lower limit = [,/observed events - (Z,, x 0.5)12 

Upper limit = [Jobserved events + (%, x 0.5)y 
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Division of these limits for the observed number by the expected number of events 
yields the approximate 95% (or 99%) confidence interval for the SIR. 

[Jobserved events - (Z,, x 0.5)12 
Lower limit of SIR = 

expected events 

2 

{ f i i  + ('a12 0-5)} 

Upper limit of SIR = 
A 

Testing whether the standardized ratio dzxers from the expected value 
This can be achieved simply by calculating the appropriate confidence intervals, 

so that it can be seen whether the value of 100 is included or excluded. 
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It should be noted that, with indirect standardization, the population weights 
which are used in the standardization procedure are the age-specific populations in 
the subgroup under study. Thus if SIRs are calculated for many population subgroups 
(e.g., different provinces, ethnic groups) with different population structures, the 
different SIRs can only be related to the standard population (as in Example 11) and 
not to each other. Thus, if the SIR for lung cancer in males in Scotland in 1970-74, 
using the incidence rates of 1960-64 as our standard, is calculated to be 1.22 (or 122 as 
a percentage), it cannot be deduced that the relative risk in 1980-84 compared to 
1970-74 is 1441122 or 1.18. 

Cumulative rate and cumulative risk 
Day (1987) proposed the cumulative rate as another age-standardized incidence 

rate. In Volume IV of the series Cancer Incidence in Five Continents, this measure 
replaced the European and African standard population calculations (Waterhouse et 
al., 1982). 

The cumulative risk is the risk which an individual would have of developing the 
cancer in question during a certain age span if no other causes of death were in 
operation. It is essential to specify the age period over which the risk is accumulated: 
usually this is 0-74, representing the whole life span. For childhood cancers, 0-14 can 
be used. 

The cumulative rate is the sum over each year of age of the age-specific incidence 
rates, taken from birth to age 74 for the 0-74 rate. It can be interpreted either as a 
directly age-standardized rate with the same population size in each age group, or as 
an approximation to the cumulative risk. 

It will be recalled that ai is the age-specific incidence rate in the ith age class which 
is ti years long. In other words if the age classes used are 0,l-4,s-9 . . . then t, will be 
1, t2 will be 4, t, will be 5 etc. The cumulative rate can be expressed as 

A 

Cum. rate = 1 ai ti (1 1.23) 
i =  1 

where the sum is until age class A. Assuming five-year age classes have been used 
throughout in the calculation of age-specific rates, for the cumulative rate 0-74, A = 
15 and 

15 

Cum. rate (0-74) = 1 5ai 
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It is more common to express this quantity as a percentage rather than per 
100 000. 

The cumulative risk has been shown by Day (1987) to be 

Cum. risk = 100 x [I - exp(-cum. rate/100)] (1 1.24) 
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Standard error of cumulative rate 
The variance and standard error of the cumulative rate can be derived from the 

expressions for the variance and standard error of a directly adjusted rate (1 1.10 and 
11.1 1) using the appropriate weights (i.e., the lengths of the age-intervals, ti) and the 
Poisson approximation : 

A 

Var (cum. rate) = 1 (ait:/ni) (1 1.25) 
i = l  
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and hence the standard error of the cumulative rate, s.e.(cum. rate) can be expressed 
as 

/ A  

s.e.(cum. rate) = J C (nit:/%) 
i = l  

A 95% confidence interval for the cumulative rate is readily obtained by using 
equation (1 1.8) : 

PART 11. PROPORTIONATE METHODS 

Percentage (relative) frequency 
If the population from which the cases registered are drawn is unknown, it is not 

possible to calculate incidence rates. In these circumstances, different case series 
must be compared in terms of the proportionate distribution of different types of 
cancer. The usual procedure is to calculate the percentage frequency (or relative 
frequency) of each cancer relative to the total: 

R  
relative frequency = - 

T  
(1 1.27) 

where R  = number of cases of the cancer of interest in the study group 

T  = number of cases of cancer (all sites) in the study group 

An alternative is the ratio frequency (Doll, 1968) where each cancer is expressed 
as a proportion of all other cancers, rather than as a proportion of the total: 

ratio frequency = 
R 

T - R  

This may have advantages in certain circumstances (for example, when dealing 
with a cancer that constitutes a large proportion of the total series), but there are 
disadvantages also, and it is not considered further here. 

Comparisons of relative frequency may take place between registries, or within a 
registry, for example, between different geographical areas, different ethnic groupsor 
different time periods. The problem with using relative frequency of different 
tumours in this way is that the comparison is often taken as an indication of the actual 
difference in risk between the different subgroups, which in fact can only be 
measured as the ratio between incidence rates. The ratio between two percentages 
will be equivalent to the relative risk only if the overall rates (for all cancers) are the 
same. 

In the example shown in Figure 1, the ratio between the incidence rates (rate ratio) 
of liver cancer in Cali and Singapore Chinese, which have similar overall rates of 
incidence, is 6.9. This is well approximated by the ratio between the percentage 
frequencies of liver cancer in the two populations'(7.3). However, although the rate 
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Cali Singapore Dakar 
Chinese 

G1 Breast and Cervix cancer 

Liver cancer 

Figure 1. Incidence rates (per 100 000) and percentage frequencies of cancers in females in 
three three registries 
Breast + cervix cancer (ICD 174 + 180); liver cancer (ICD 155). For liver cancer, ratio of incidence rates 
Singapore Chinese:Cali = 5.510.8 = 6.9, Singapore Chinese:Dakar = 55/55 = 1.0; Ratioofpercentages 
Singapore Chinese:Cali = 4.410.6 = 7.3, Singapore Chinese:Dakar = 4.4114.9 = 0.3. 

ratio (relative risk) of liver cancer in Singapore Chinese and Dakar is 1.0, the ratio 
between the two percentages is 0.30. This is because the overall incidence rate in 
Dakar (37.0 per 100 000) is only 29% of that in Singapore Chinese (126.2 per 100 000) 
because cancers other than liver cancer are less frequent there. 

An analogous problem is encountered in comparing percentage frequencies of 
cancers in males and females from the same centre. In practically all case series, the 
incidence of female-specific cancers (breast, uterus, ovary) will be considerably 
greater than for male-specific cancers (prostate, testis, penis). However, because in 
comparisons of relative frequency the total percentage must always be 100, the 
frequency of those cancers which are common to both sexes will always be lower in 
females. 
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Stomach Cancer 

Figure 2. Incidence rates (per 100 000) and percentage frequencies of stomach cancer and 
sex-specific cancers in males and females, Cali, Colombia, 1972-lW6 
Sex-specific sites (ICD 174-183 females, ICD 185-187 males); Stomach cancer (ICD 151). Sex ratio of 
stomachcancer: ratio of incidence rates, M:F = 22.1114.8 = 1.49; ratio of percentages, M:F = 23.4111.5 
= 2.03; ratio of percentages excluding sex-specific sites, M :F = 26.7123.0 = 1.16. 

In the example shown, the risk of stomach cancer in males relative to females in 
Cali, comparing incidence rates, is 1.49 (Figure 2). However, the ratio of the relative 
frequencies is 2.03, because sex-specific cancers are responsible for about half of the 
tumours in females, whereas they account for only 12% in males. Comparisons of 
relative frequencies within a single sex do, of course, give the same results as 
comparisons of incidence rates. 

One solution to the problem of comparing relative frequencies between different 
centres where the occurrence of certain common tumours is highly variable is to 
calculate residual frequencies, that is the percentage frequency of a particular cancer 
after removing tumours occurring at the most variable rates from the series. This 
procedure may be useful for comparing series where the differences in total incidence 
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rates are largely due to a few variable tumours-it has been used, for example, for 
comparing series from Africa by Cook and Burkitt (1971). However, it does 
somewhat complicate interpretation, and the results may be no clearer than using the 
simple relative frequency. Thus, in the example in Figure 2, removing sex-specific 
sites from the denominator means that total incidence becomes higher in males than 
females, so that the ratio of residual frequencies for stomach cancer (1.16) becomes an 
under-estimate rather than over-estimate of the true relative risk (1.49). 

In the example already presented in Figure 1, cervix plus breast cancer constitutes 
40% of cancers in Dakar but only 24.7% in Singapore Chinese. If these variable 
tumours are excluded from the denominator, the residual frequencies of liver cancer 
are 5.8% (4.41100 - 24.7) in Singapore Chinese and 24.8% (14.9/100 - 40.0) in 
Dakar. The estimate of relative risk obtained by comparing these residual frequencies 
is 0.23 (5.8/24.8), which is further from the true value (1 .O) than the estimate obtained 
by comparing crude percentages (0.30). 

As in the case of comparisons of incidence rates, comparison of proportions is 
complicated by differences in the age structure of the populations being compared. 

The relative frequency of different cancer types varies considerably with age ; for 
example, certain tumours, such as acute leukaemia, are commoner in childhood 
whilst others, which form a large proportion of cancers in the elderly (such as 
carcinomas of the respiratory and gastrointestinal tract) are very rare. Thus the 
proportion of different cancers in a case series is strongly influenced by its age 
composition, and some form of standardization for age is necessary when making 
comparisons between them. 

Two methods have been used for age-standardization, the age-standardized 
cancer ratio (ASCAR), which is analogous to direct age standardization (Tuyns, 
1968), and the standardized proportional incidence ratio (SPIR or PIR), which is an 
indirect standardization. Of these, the PIR has considerable advantages, the ASCAR 
being really of value only when data sets from completely different sources are 
compared, where there is no obvious standard for comparison. 

The age-standardized cancer ratio (ASCAR) 

The ASCAR is a direct standardization, which requires the selection of a set of 
standard age-specific proportions to which the series to be compared will be 
standardized. The choice is quite arbitrary, but a standard which is somewhat similar 
to the age-distribution of all cancers in the case series being compared will lead to the 
ASCAR being relatively close to the crude relative frequency. The proportions used 
for comparing frequencies of cancers in different developing countries (Parkin, 1986) 
are shown in Table 12. 

The ASCAR is calculated as 

ASCAR = (rilli) wi 
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where 

ri = number of cases of the cancer of interest in the study group in age class i 

ti = number of cases of cancer of all sites in the study group in age class i 
wi = standard proportion for age class i 

Table 12. Standard age distribution of cancer 
cases for developing countriesa 

Age range % 

0-14 
15-24 
25-34 
3 5-44 
45-54 
5 5-64 
65-74 
75 + 
All 

a From Parkin (1986) 
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The ASCAR is interpreted as being the percentage frequency of a cancer which 
would have been observed if the observed age-specific proportions applied to the 
percentage age-distribution of all cancers in the standard population. It must be 
stressed that the problems of making comparisons between data sets with different 
overall incidence rates remain the same and are not corrected by standardization. 

The statistical problems of comparing ASCAR scores have not been investigated 
and there appears to be no formula available for calculating a standard error. 

The proportional incidence ratio (PIR) 

The proportional incidence ratio is the method of choice for comparing data sets 
where a standard set of age-specific proportions is available for each cancer type 
(analogous to indirect age standardization, which requires a set of standard age- 
specific incidence rates). The usual circumstance is when a registry wishes to compare 
different sub-classes of the cases within it--defined, for example, by place of 
residence, ethnic group, occupation etc. In this case a convenient standard is 
provided by the age-specific proportions of each cancer for the registry as a whole. 
(Actually, an external standard is preferable, since the total for the registry will also 
include the sub-group under study. In practice, unless any one subgroup forms a large 
percentage (30% or more) of the total, this is relatively unimportant.) 

In the proportional incidence ratio, the expected number of cases in the study 
group due to a specific cancer is calculated, and the PIR is the ratio of the cases 
observed to those expected-just like the SIR-and it is likewise usually expressed as 
a percentage. 

The expected number of cases of a particular cancer is obtained by multiplying the 
total cancers in each age group in the data set under study, by the corresponding age- 
cause-specific proportions in the standard. Expressed symbolically, 

PIR = (RIE) x 100 (1 1.30) 
A 

E = 1 ti(r;l/t,*) (11.31) 
i = l  

where 

R =observed cases at the site of interest in the group under study 
E =expected cases at the site of interest in the group under study 

ri* =number of cases of the cancer of interest in the age group i in the standard 
population 

ti* =number of cases of cancer (all sites) in the age group i in the standard population 

ti =number of cases of cancer (all sites) in the age group i in the study group 

Breslow and Day (1987) give a formula for the standard error of the log PIR as 
follows : 

L i = 1  
s.e.(log PIR) = J 

R 
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where 
ri = number of cases of the cancer of interest in the age group i in the study group 

A simpler formula may be used as a conservative approximation to formula 
(1 1.32), provided that the fraction of cases due to the cause of interest is quite small: 

s.e.(log PIR) = I/,@ (1 1.33) 



Statistical methods for registries 157 

From the data in Table 14, using expression (1 1.32), the standard error can thus be 
calculated as : 

s.e.(log PIR) = 
325 03 

r =  0.033 
545 

and using .the approximate formula (1 1.33) 

1 
s.e.(log PIR) = - - 

F- 0.043 
Breslow and Day (1987) do not recommend that statistical inference procedures be 

conducted on the PIR; questions of statistical significance of observed differences 
can be evaluated with the confidence interval. 

To obtain 95% confidence interval for a PIR of 2.03 (Example 15), and using the 
s.e.(log PIR) calculated by using expression (1 1.32) 

PIR = 2.03 

log PIR = 0.708 

95% confidence interval for log PIR = 0.708 + (1.96 x 0.033) 

95% confidence interval for PIR = 1.90, 2.17 

Relationships between the PIR and SIR 

Because calculation of the PIR does not require information on the population at 
risk, a raised PIR does not necessarily mean that the risk of the disease is raised, 
merely that there is a higher proportion of cases due to that cause than in the reference 
population. 

The relationship between the PIR and the SIR has been studied empirically by 
several groups (Decouflk et al., 1980 ; Kupper et al., 1978 ; McDowall, 1983 ; Roman et 
al., 1984). 

In practice, it is found that for any study group 

PIR = 
SIR 

SIR (all cancers) 

The ratio SIR/SIR (all cancers) is termed the relative SIR. Thus, a relative SIR of 
greater than 100 suggests that the cause-specific incidence rate in the study 
population is greater than would have been expected on the basis of the incidence rate 
for all cancers. A consequence of this is that the PIR can be greater than 100 whilst the 
SIR is less, or vice versa. 

Table 15 shows an example from the Israel cancer registry (Steinitz et al., 1989). In 
this example, Asian-born males have a lower incidence of cancer (all sites) than the 
reference ~opulation (here 'all Jewish males'), resulting in an SIR (all cancers) of 77%. 
They also have a lower SIR for lung cancer than all Jewish males (86%). However, 
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because lung cancer is proportionately more important in Asian males than in Jewish 
males as a whole, the PIR exceeds 100. 

Table 15. Relationship between PIR and SIR. Cancer incidence in Jews in Israel: males born 
in Asia relative to all Jewish males 

Cause Observed SIR PIR Relative SIR 
cases (%I (%I (%I 

All cancers 677 1 
Oesophagus 114 
Stomach 693 
Liver 125 
Lung 1062 




