

Massive Transfusion Protocol in Obstetric Haemorrhage

Dr CK Lee

- In one morning, I was called by an anaesthetist who asked if he could continue to transfuse at a rate of 400 ml/hour for a woman after baby delivery?
- What should I do?
- What have been done so far?
- Can I help to save lives?

Massive transfusion - definition

- Massive transfusion is defined, in adults, as replacement of >1 blood volume in 24 hours or >50% of blood volume in 4 hours (adult blood volume is approximately 70 mL/kg).
- (historically defined as the replacement by transfusion of 10 units of red cells in 24 hours or in some countries as three units over one hour)

Symptoms & Signs in clinical bleeding

Blood loss (% Blood Volume)	Systolic BP (mm Hg)	Signs & Symptoms
10-15	Normal	postural hypotension
15-30	slight fall	Tachycardia, thirst, weakness
30-40	60-80	pallor,oliguria, confusion
40+	40-60	anuria, air hunger, coma, <mark>death</mark>

Order of magnitude in obstetric bleeding

	Antepartum 60 – 65 kg	Postpartum 55 – 60 kg	
Blood Volume	4200 – 4500 ml	3850 – 4200 ml	
15 – 30 % blood loss	Up to 1300 ml		
40% blood loss	Up to 1800 ml		

Blood loss in vaginal delivery: 300 ml Blood loss in elective CS: 600 ml

Blood donation: 350 - 450 ml A unit of red blood cells: ~ 300 ml

Causes of massive bleeding in obstetric settings

- Antepartum
- Postpartum
- With underlying medical illnesses e.g. thrombocytopenia, coagulopathy

Table 1. Mechanisms of coagulopathy dependent on aetiology of obstetric bleed. Late onset isabnormal coagulation usually only after 2000 ml blood loss

			Mechanism of coagulopathy		
Aetiology of bleed	Likelihood of coagulopathy (% transfused FFP)	Time of onset of coagulopathy	Dilution	Consumptive	
				Local to uterus and placenta	Disseminated intravascular
Uterine atony	14	Late	Contributes in severe cases	Contributes in severe case	Very rare
Genital tract or surgical trauma	4	Late	Contributes in severe cases	Contributes in severe cases	Very rare
Placental abruption	42	Early (often before blood loss observed)	Contributes in severe cases	Main cause in mild and moderate cases	Contributes in severe cases
Retained and adherent placenta	8	Early or late	Contributes in most cases	Contributes in some cases	Rare unless associated with infection
Uterine rupture	66	Early	Main cause because large bleeds are common	Contributes in some cases	-
AFE	100	Early	Contributes in large bleeds	-	Main cause
Pre-eclampsia/HELLP	ND	Early (often before labour)	Contributes in large bleeds	Contributes in some cases	Contributes in some cases
AFE, amniotic fluid embo	lus; HELLP, haemolysis, el	evated liver enzymes an	d low platelets.		

Anaesthesia

pages 78-e28, 1 DEC 2014 DOI: 10.1111/anae.12913 http://onlinelibrary.wiley.com/doi/10.1111/anae.12913/full#anae12913-fig-0001

soiled sanitary towel 30ml

saturated small swab (10x10cm) 60 ml

incontinence pad 250 ml

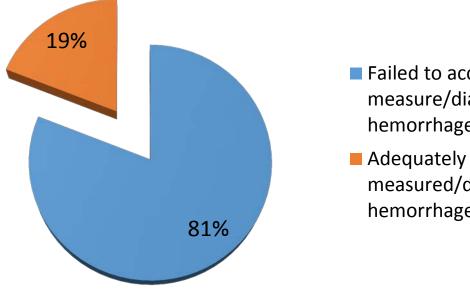
saturated swab (45x45cm) 350 ml

full kidney dish 500 ml

blood spilling on bed 1000 ml

blood spilling to floor 2000 ml

saturated sanitary towel **100 ml**


floor spill (100cm diameter) 500 ml

Blood loss estimation

Nurses Estimating Blood Loss

Failed to accurately measure/diagnose hemorrhage

measured/diagnosed hemorrhage

Remember obstetricians can also miss or under-estimate the amount of blood loss

Known problems associated with Massive Transfusion

- Dilutional thrombocytopenia
- Coagulation factors deficiencies
- Metabolic
 - Acid base balance
 - Citrate toxicity
 - Hypocalcaemia
 - Hyperkalaemia
 - Hypothermia

Haematologist point of view

- Aim to save lives (mother and fetus)
- Treat the underlying causes of obstetric bleeding (obstetricians, radiologists +/- surgeons)
- Circulatory and transfusion support with correction of clotting problems (thrombocytopenia and clotting factors); correct metabolic and other problems as far as possible (anaesthetists, blood bank, clinical laboratory, BTS, nurses and porters)

Prevention is always the best but when it happens, how to achieve the best outcome?

Key points in managing any patient with significant bleeding who requires massive transfusion

- Early recognition
- <u>Early</u> activation of life saving procedures before any permanent damage or even death
- Availability of experienced doctors
- Support and correct underlying causes simultaneously
- <u>Repeat</u> assessment clinical and laboratory including POCT
- (Experience and practice tell the difference)

Repeated assessments are crucial

- PP1 In patients with critical bleeding requiring massive transfusion, the following parameters should be measured early and frequently:
 - temperature
 - acid-base status
 - ionised calcium
 - haemoglobin
 - platelet count
 - PT/INR
 - APTT
 - fibrinogen level.

With successful treatment, values should trend towards normal.

What parameters points to deterioration?

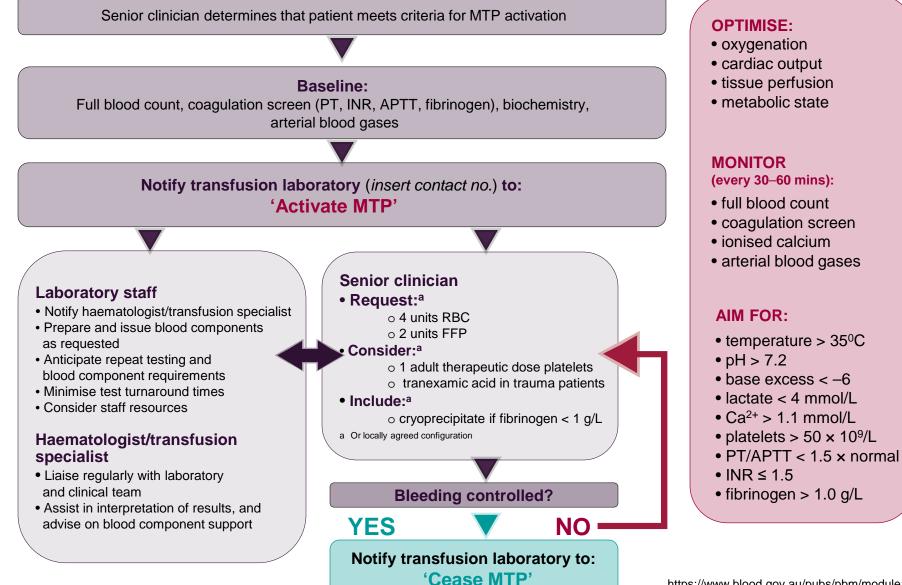
PP2	Values indicative of critical physiologic derangement include:
	• temperature < 35°C
	 pH < 7.2, base excess > -6, lactate > 4 mmol/L
	 ionised calcium < 1.1 mmol/L
	 platelet count < 50 × 10⁹/L
	• PT > 1.5 × normal
	• INR > 1.5
	• APTT > 1.5 × normal
	• fibrinogen level < 1.0 g/L

Will Massive Blood Transfusion Protocol be of help in managing significant Obstetric Haemorrhage?

Simple answer: Yes, but why and how

Massive Blood Transfusion Protocol (MTP)

- Provide a framework for systematic and co-ordinate management of patients with significant bleeding that require massive transfusion
- Evidence based and involve multidisciplinary approach to patient care and blood component support
- Early recognition and activation, assessment and reassessment, bleeding control and haemostatic/ transfusion support are the key elements
- Have been successfully used in many settings



To ensure rapid and timely availability of blood components to facilitate resuscitation.

Massive transfusion protocol (MTP) template

The information below, developed by consensus, broadly covers areas that should be included in a local MTP. This template can be used to develop an MTP to meet the needs of the local institution's patient population and resources

https://www.blood.gov.au/pubs/pbm/module1/tran sfusion.html

Successful Implementation requires

- 1. Introduce simulation training for all staff involved in triggering and delivering the massive blood transfusion protocol
- 2. Ensure an audit system (review) is in place to assess MTP activation, non-activation and blood component wastage to optimize effective use of the toolkit
- 3. Early intervention (bleeding control) is essential to stop bleeding and ensure pathways are in place to assess these services at all times
- 4. Allocate key role players in each MTP activation and to ensure effective communication, actions and documentations

Transfusion support

- Timeliness to provide blood and blood components (including availability of thawed plasma)
- Access to important laboratory results and advise to adjust transfusion of blood components
- Access to Blood Transfusion Service for additional blood components

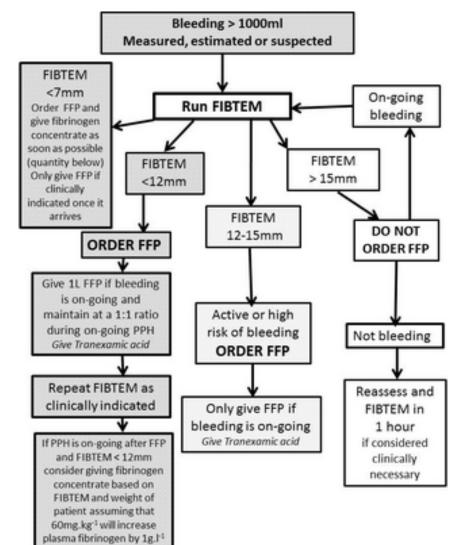
Blood Components Support

Red Cells

Plasma

Availability, Timeliness but not wastage

POCT to monitor coagulopathy



Cryo precipiates to provide fibrinogen

Haemostatic management of obstetric haemorrhage

POCT results provide adjustment of transfusion support within a shorter timeframe

BUT, POCT requires training and experience in interpretation

Anaesthesia

pages 78-e28, 1 DEC 2014 DOI: 10.1111/anae.12913 http://onlinelibrary.wiley.com/doi/10.1111/anae.12913/full#anae12913-fig-0001

Avoid the followings to appear

PP2	Values indicative of critical physiologic derangement include: • temperature < 35°C
	 pH < 7.2, base excess > -6, lactate > 4 mmol/L
	 ionised calcium < 1.1 mmol/L
	 platelet count < 50 × 10⁹/L
	• PT > 1.5 × normal
	• INR > 1.5
	• APTT > 1.5 × normal
	• fibrinogen level < 1.0 g/L

Any other important points to note

- Never work alone or within the operating theatre, always seeks advice from haematologist in charge of the laboratory and blood bank to guide therapy
- Ensure blood warmers work
- Always include the support from the minor staff like porters

Conclusion

- Determine the cause of haemorrahge and recognize PPH early
- Activation of MTP with multidisciplinary approach
- Note fibrinogen levels as a marker of severity of bleeding
- Employ point-of-care testing (POCT) as a useful supplementation to standard laboratory tests
- Use goal-directed Frozen Plasma and targeted correction of coagulopathies
- Adopt regular real-time on-site simulation training for members of staff involved in activating and implementing MTP protocols with debrief sessions.

As a doctor and father, I sincerely wish every pregnancy and delivery should start and end happily.

Thank you

