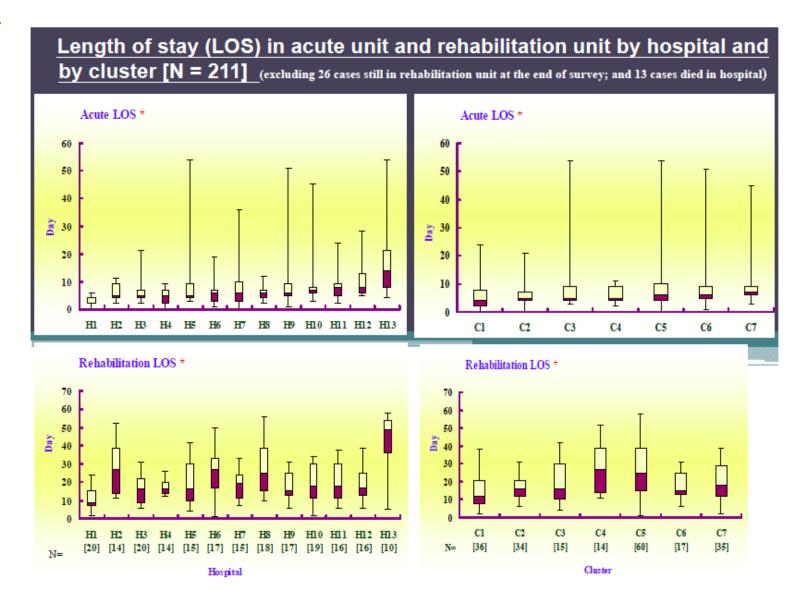
Rehabilitation in Hospital Authority-Challenges and the Way Ahead

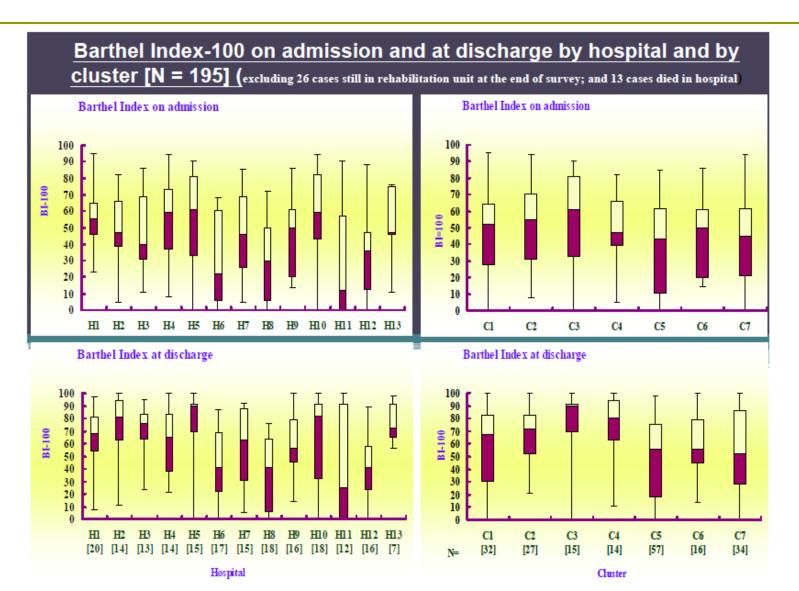

Leonard S.W. Li

Head, Division of Rehabilitation Medicine
Department of Medicine
Tung Wah Hospital

Rehabilitation Services within Hospital Authority


Spinal Rehabilitation Services in Asia

Country	Population ¹	GDP (nominal) ²	No Access to acute care (%)	No Access to rehab care (%)	No Access to follow-up (%)
Bangladesh	162,221,000	506	80	40	25
Brunei	400,000	37,053	20	50	20
Cambodia	13,388,910	818	80	20	45
China	1,331,670,000	3,315	10	50	50
Chinese Taipei	23,027,672	17,040	0	0	15
Hong Kong	7,008,900	30,755	0	0	0
India	1,162,930,000	1,016	n/a	60	60
Indonesia	230,227,687	2,246	65	65	65
Japan	127,630,000	38,559	0	0	0
Loas	6,320,000	841	60-80	60-90	60-90
Malaysia	28,200,000	8,141	10	25	25
Philippines	92,226,600	1,866	10	35	35-40
Singapore	4,839,400	38,972	0	5	0-5
South Korea	48,333,000	19,505	0	0	0
Thailand	63,389,730	4,115	<1	>1	n/a
Vietnam	88,069,000	1,040	n/a	5	5
Iran	70,495,782	4,732	rarely	Home PT	100


Spinal Rehabilitation Services in Asia

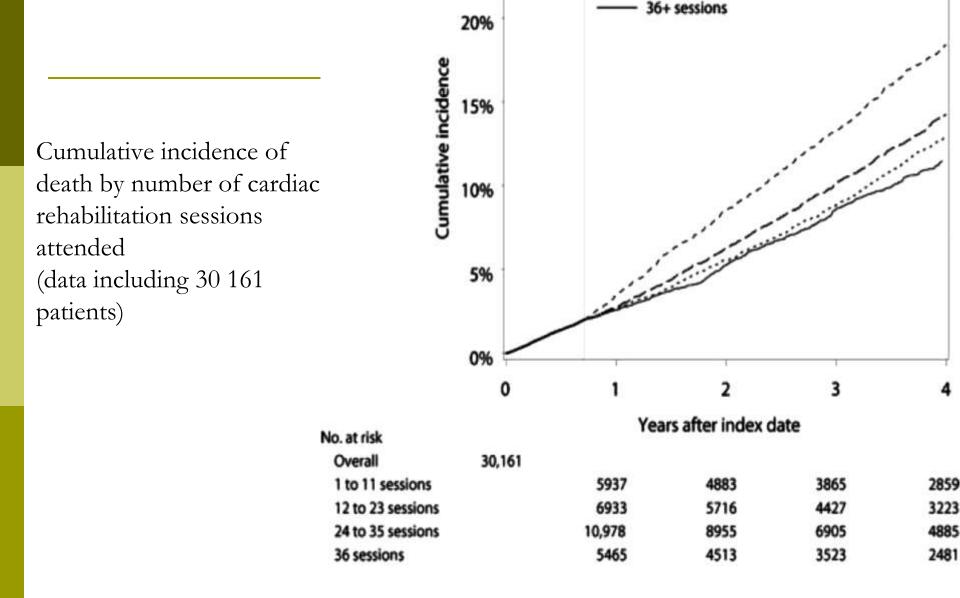
Country	Population ¹	GDP (nominal) ²	No Rehab (%)	Specialized hospital (%)	SCI unit /ward (%)	SCI Rehab center (%)	General Rehab (%)	Community based Rehab (%)	Other (%)
Bangladesh	162,221,000	506	20	20	5	55			
Brunei	400,000	37,053	50	0	0	0	40	10	
Cambodia	13,388,910	818				50	10	40	
China	1,331,670,000	3,315	50	0	1	5	40	4	
Chinese Taipei	23,027,672	17,040				60	30	10	
Hong Kong	7,008,900	30,755					100		
India	1,162,930,000	1,016	10	40	20	10	10	10	
Indonesia	230,227,687	2,246			10		20	5	
Japan	127,630,000	38,559	0	10	20	40	30	0	
Loas	6,320,000	841	20		20		30	30	
Malaysia	28,200,000	8,141	n/a	n/a	n/a	n/a	n/a	n/a	
Philippines	92,226,600	1,866	20	30	10	10	10	15	5
Singapore	4,839,400	38,972	3			80	15	5	5
South Korea	48,333,000	19,505			60		40		
Thailand	63,389,730	4,115	n/a	n/a	n/a	n/a	n/a	n/a	
Vietnam	88,069,000	1,040				75	20	5	
Iran	70,495,782	4,732	40					60	

Stroke Rehabilitation Services in HA

Stroke Rehabilitation Services in HA

Cardiac Rehabilitation Services in HA

Patients' accessibility to CRP service (AMI)


	НКЕ			HKW KC KE			KW				NTE		NT	NTW				
	PYNEH	TWEH	RHTSK	QMH	TWH	QEH	ткон	UCH	СМС	KWH	OLMH	РМН	У СН	AHNH	NDH	PWH	РОН	тмн
CRP1	✓	* **	✓	✓	✓	✓	**	✓	x	✓	✓	✓	✓	X#	✓	✓	**	✓
CRP2	√ In TWEH	✓	✓	√ In TWH	✓	✓	x	✓	x	~	✓	~	x	_^	√ In PWH	✓	√ In TMH	~

Cardiac Rehabilitation Services (Phase II) in HA

CRP2 service provision - protocol & component (AMI)

				HKE			HKW		KC	K	Œ
			PYNEH	TWEH	RHTSK	GH	QMH	TWH	QEH	TKOH	UCH
Availability of	CRP 2 protoc	<u>ol</u>	Yes	Yes	Yes			Yes	Yes		Yes
		Exercise testing	Yes	Yes	Yes			Yes	Yes		Yes
	Assessment	Echocardiogram	No	Yes	No			Yes	Yes		Yes
		Risk stratification	No	Yes	Yes			Yes	Yes		Yes
Components		Education	Yes	Yes	Yes			Yes	Yes		Yes
Components in CRP 2	Training	Physical training	Yes	Yes	Yes	,	To TWH	Yes	Yes	,	Yes
III CKP Z		Post-programme evaluation	Yes	Yes	Yes	,	IO I WIT	Yes	Yes	/	Yes
	Counseling		Yes	Yes	Yes			Yes	Yes		Yes
	Discharge FU	by nurse	No	Yes	Yes			Yes	Yes		No
į	Others (Please	e specify)	/	/	/			Phone FU	/		/
Duration of CRP2 (weeks)		2-8	average 8	5			8	8		4 or 12	
			Variable*	average 16	6			16	16		12

					KW				NTE			NTW
			CMC	KWH	OLMH	PMH	YCH	AHN^	NDH	PWH	POH	TMH
Availability of	Availability of CRP 2 protocol			Yes	Yes	Yes				Yes		Yes
		Exercise testing		Yes	Yes	Yes				Yes		Yes
	Assessment	Echocardiogram		No	No	Yes				No		Done before referral
		Risk stratification		Yes	Yes	Yes				Yes		Yes
		Education		Yes	Yes	Yes				Yes		Yes
Components	Training	Physical training		Yes	Yes	Yes				Yes		Yes
in CRP 2		Post-programme evaluation	/	Yes	Yes	Yes	,	,	То	Yes	To TMH	Yes
	Counseling			Yes	Yes	Yes	/	/	PWH	No		Yes
	Discharge FU	by nurse		No	No	No				Yes		No
	Others (Pleas	se specify)		/	OT Diet	/				/		rehab in advanced areas/ for co-morbid conditions/ complicated cases
Duration of CRP2 (weeks)			8	8	5				7		variable; usu 4-8wks	
Number of se	ssions per pat	ient		16	12	5				7		variable; usu 8-16 sessions depending on risk & goals

25%

1 to 11 sessions 12 to 23 sessions 24 to 35 sessions

Hammill BG, et al. Circulation. 2010;121:63-70.

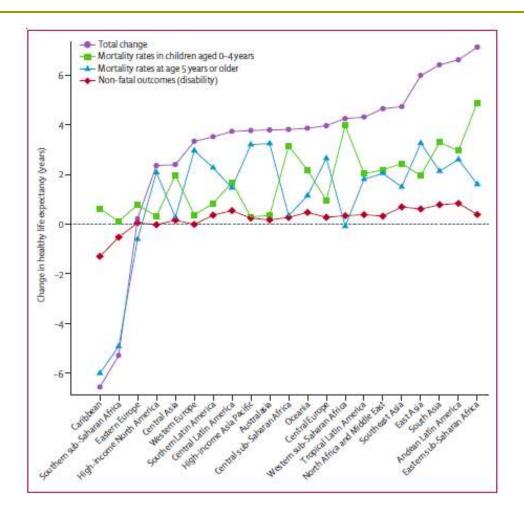
Cost-effectiveness

- Resources
- Expertise
 - Credentialling
 - Training
- Technology
- Outcome measurements
 - Simple
 - Minimal time and labour for data collection
 - Measuring the (overall) end effects of the rehabilitation program

Challenge to Resource Alocation

Global Burden of Disease Study 2010 – 150 countries (WHO)

Healthy Life Expectancy: summarises mortality and non-fatal outcomes in a single measure of average population health.


	Male healthy life ex	rpectancy	Female healthy life	expectancy
	1990	2010	1990	2010
0 years	54-8 (53-2-56-3)	59-0 (57-3-60-6)	587 (56-9-60-3)	63-2 (61-4-65-0)
1 years	58-1 (56-3-59-5)	60-7 (58-9-62-3)	61-4 (59-6-63-1)	64-6 (62-7-66-3)
5 years	55-5 (53-8-57-0)	57-7 (55-9-59-3)	58-8 (57-0-60-5)	61-6 (59-7-63-3)
10 years	51-1 (49-5-52-6)	53-2 (51-5-54-8)	54-4 (52-6-56-1)	57-0 (55-2-58-7)
15 years	46-7 (45-2-48-1)	48-7 (47-1-50-2)	50-0 (48-3-51-6)	52-5 (50-8-54-2)
20 years	42-5 (41-0-43-8)	44-4 (42-8-45-8)	45-8 (44-1-47-3)	48-2 (46-6-49-8)
25 years	38-4 (36-9-39-6)	40-2 (38-8-41-6)	41-6 (40-1-43-1)	44-1 (42-5-45-6)
30 years	34-3 (33-0-35-5)	36-2 (34-8-37-6)	37-6 (36-1-38-9)	40-0 (38-5-41-4)
35 years	30-3 (29-1-31-5)	32-3 (30-9-33-5)	33-6 (32-2-34-8)	35-9 (34-5-37-3)
40 years	26.5 (25.3-27.5)	28-4 (27-1-29-6)	29-6 (28-4-30-8)	32-0 (30-6-33-2)
45 years	22-7 (21-6-23-7)	24-6 (23-4-257)	25-8 (24-6-26-9)	28-0 (26-8-29-2)
50 years	19-2 (18-2-20-1)	21-0 (19-9-22-0)	22-1 (21-0-23-1)	24-2 (23-1-25-2)
55 years	15-9 (15-1-16-7)	17-6 (16-6-18-5)	18-6 (17-6-19-5)	20-5 (19-5-21-5)
60 years	13.0 (12.2-13.7)	14-4 (13-6-15-2)	15-3 (14-5-16-1)	17-0 (16-1-17-9)
65 years	10-3 (9-7-10-9)	11-6 (10-8-12-3)	12-3 (11-6-13-0)	13-8 (13-0-14-5)
70years	8-0 (7-4-8-5)	9-0 (8-4-9-6)	9-6 (9-0-10-2)	10-9 (10-2-11-5)
75 years	6-0 (5-6-6-5)	6.9 (6.4-7.4)	7-3 (6-8-7-8)	8-3 (7-8-8-9)
80 years	4-4 (4-1-4-8)	5-1 (4-7-5-5)	53 (4.9-5.7)	6-1 (5-7-6-5)

Salomon JA, et al. Lancet 2012; 380: 2144-62

Life Expectancy vs Healthy Life Expectancy

	1990				2010					
	Male population		Female population	n	Male population		Female population	n		
	Life expectancy	Healthy life expectancy	Life expectancy	Healthy life expectancy	Life expectancy	Healthy life expectancy	Life expectancy	Healthy life expectancy		
Afghanistan	52-2 (48-8-55-5)	43-3 (40-2-46-2)	517 (47-5-557)	41-6 (37-8-44-9)	58-2 (54-2-62-8)	48-5 (44-8-52-1)	57-3 (52-2-61-7)	46-2 (42-0-49-9		
Albania	70-4 (69-9-70-8)	61-1 (59-1-63-0)	76-0 (75-5-76-5)	65-0 (62-6-67-1)	72-0 (69-2-74-9)	62-5 (59-7-65-3)	78-1 (75-9-80-2)	67-0 (64-4-69-7		
Algeria	693 (66-9-71-5)	59.5 (56-8-62-1)	72-4 (70-4-74-3)	61-2 (58-4-63-8)	74-3 (73-2-75-4)	63-8 (61-3-66-1)	76-5 (75-5-77-5)	64-6 (62-1-67-0		
Andorra	77-2 (75-4-78-9)	66-6 (63-9-69-1)	83-1 (81-6-84-7)	70-6 (67-6-73-3)	79-8 (78-8-81-0)	68-3 (65-6-70-6)	85-2 (84-2-86-2)	72-2 (69-4-747		
Angola	43.9 (36.3-51.9)	375 (31-3-43-7)	517 (43-0-59-0)	43-4 (36-2-49-5)	57-9 (49-5-66-5)	497 (43-0-56-5)	63-9 (56-0-72-0)	54-0 (47-9-60-7		
Antigua and Barbuda	707 (69-5-71-8)	61-0 (58-6-63-1)	757 (74-6-76-7)	64-5 (62-0-66-8)	74-1(72-2-75-9)	61-2 (58-0-64-2)	79-0 (77-3-80-5)	65-5 (62-4-68-3		
Argentina	69-0 (68-9-69-2)	60-5 (58-7-62-1)	76-1 (75-9-76-3)	65-9 (63-6-67-7)	72-5 (72-4-72-6)	63-5 (61-4-65-1)	79-3 (79-2-79-4)	687 (66-5-70-6		
Armenia	66-2 (65-2-67-1)	57-5 (55-3-59-4)	74-2 (73-4-75-1)	63-5 (61-1-65-6)	68-9 (67-2-70-5)	59-9 (57-7-62-3)	78-5 (77-4-79-6)	67-2 (64-7-69-9		
Australia	73-8 (73-7-73-9)	64-1 (62-1-65-8)	80-0 (79-9-80-1)	68-8 (66-6-707)	79-2 (79-1-79-3)	68-4 (66-3-70-3)	83-8 (83-7-83-9)	71-8 (69-5-73-9		
Austria	72-2 (72-0-72-3)	63-1 (61-0-64-8)	78-9 (78-7-79-0)	68-2 (65-7-70-2)	77-7 (77-5-77-9)	67-0 (647-69-0)	83-3 (83-2-83-5)	71-2 (68-7-73-5		
Azerbaijan	62-3 (61-4-63-3)	54-2 (52-2-55-9)	71-0 (70-1-71-9)	60-5 (58-0-62-6)	68-9 (67-6-70-2)	59-9 (57-7-62-0)	76-2(74-9-77-4)	65-1 (62-6-67-3		
Bahrain	70-8 (69-5-72-1)	60-0 (57-5-62-5)	72-3 (71-1-73-5)	60-1 (57-1-62-6)	76-4 (74-8-78-2)	64-3 (61-5-66-9)	79-1 (77-5-80-7)	65-2 (62-0-68-0		
Bangladesh	58-1 (56-2-60-0)	487 (46-3-51-2)	59-8 (57-7-62-1)	49-9 (47-2-52-4)	67-2 (65-6-68-8)	57-1 (54-6-59-4)	71-0 (69-4-72-8)	59-8 (57-3-62-3		
Barbados	69-0 (68-3-69-7)	59-6 (57-5-61-5)	74-4 (73-8-75-1)	62-9 (60-3-65-2)	74-3 (72-7-76-0)	61-9 (58-8-64-7)	77-0 (75-6-78-3)	647 (619-67-3		
Belarus	655 (649-66-0)	57-4 (55-6-59-1)	75-0 (74-6-75-5)	64-6 (62-3-66-5)	64-1 (63-4-64-9)	56-4 (54-6-58-1)	76-0 (75-5-76-5)	65-6 (63-3-67-6		
Belgium	72-6 (72-4-72-7)	63-4 (61-5-65-0)	79-2 (79-0-79-3)	68-0 (65-8-70-1)	76-7 (76-4-77-1)	66-5 (64-4-68-4)	82-3 (81-9-82-6)	70-6 (68-4-72-7		
Belize	69-9 (69-0-70-9)	60-0 (57-7-62-1)	74-3 (73-4-75-2)	62-6 (60-0-65-0)	68-9 (67-3-70-3)	573 (545-60-0)	73-6 (72-3-75-0)	615 (58-9-641		
Benin	53 0 (51 5 - 54 6)	44-8 (42-6-46-7)	58-6 (57-1-59-9)	48-3 (45-9-50-6)	60-7 (57-6-63-5)	52-2 (49-2-55-0)	65-9 (63-2-68-5)	55:1 (52:1-58:0		
Bhutan	57-5 (50-7-63-7)	48-9 (43-7-53-8)	60-4 (53-0-66-7)	51-2 (45-2-56-4)	67-6 (60-9-73-3)	58-2 (53-1-62-9)	71-7 (65-7-77-1)	61-5 (56-7-66-1		
Bolivia	61-0 (59-6-62-6)	52-3 (50-2-54-3)	63-5 (62-0-65-0)	54-1 (51-8-56-3)	69-7 (67-3-72-5)	60-1 (57-2-62-8)	71-7 (69-5-74-1)	61-5 (58-7-64-3		
Bosnia and Herzegovina	68-9 (68-7-69-1)	59-8 (57-8-61-5)	74-8 (74-6-75-0)	63-7 (61-3-65-8)	74·1(73·9-74-4)	64-4 (62-3-66-2)	78-8 (78-5-79-0)	68-1 (65-8-70-2		
Botswana	63-9 (60-2-67-9)	54-6 (51-3-58-4)	69-3 (66-0-73-0)	58-5 (55-3-61-8)	68-1 (63-6-73-6)	57-1 (53-0-61-6)	74-0 (69-2-80-6)	61-3 (57-1-66-9		
Brazil	65-4 (65-1-65-8)	56-6 (54-9-58-2)	73-1 (72-7-73-4)	62-4 (60-3-64-2)	70-5 (70-2-70-8)	61-1 (59-1-62-8)	77-7 (77-5-77-9)	66-6 (645-68-5		
Brunei	73-1 (72-4-73-8)	64-0 (61-7-65-9)	76-0 (75-3-76-7)	66-0 (63-6-67-9)	75-5 (74-3-76-6)	66-2 (63-8-68-2)	79-1 (78-0-80-3)	68-6 (66-1-70-9		
Bulgaria	68-2 (68-1-68-4)	60-1 (58-3-61-7)	74-8 (74-6-75-0)	65-0 (62-9-66-9)	70-1 (69-9-70-3)	615 (595-63-2)	77-0 (76-8-77-2)	66-8 (647-68-7		
Burkina Faso	49-6 (48-0-51-2)	42-0 (40-1-44-0)	54-5 (53-1-56-1)	45-6 (43-4-47-6)	52-8 (46-6-58-1)	45-4 (40-1-50-3)	57-6 (52-7-62-1)	48-8 (44-3-52-9		
Burma	54-4 (45-8-61-9)	47-1 (40-2-52-9)	587 (50-9-65-9)	50-2 (44-1-55-8)	60-7 (51-4-69-8)	53-2 (45-9-60-3)	67-6 (60-1-73-6)	583 (527-634		

Drivers of changes in healthy life expectancy between 1990 and 2010

Salomon JA, et al. Lancet 2012; 380: 2144-62

Implications

- Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality.
- Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world.

Cost-effectiveness

Motor and Functional Recovery After Stroke A Comparison of 4 European Rehabilitation Centers

Liesbet De Wit, PT, PhD; Koen Putman, PT, PhD; Birgit Schuback, PT, MSc; Arnošt Komárek, PhD; Felix Angst, MD, MPH; Ilse Baert, PT, MSc; Peter Berman, MB, BS, FRCP; Kris Bogaerts, MSc; Nadine Brinkmann, PT, BSc; Louise Connell, PT, BSc; Eddy Dejaeger, MD, PhD; Hilde Feys, PT, PhD; Walter Jenni, MD; Christiane Kaske, PT, BSc; Emmanuel Lesaffre, PhD; Mark Leys, PhD; Nadina Lincoln, PhD; Fred Louckx, PhD; Wilfried Schupp, MD; Bozena Smith, OT, MSc; Willy De Weerdt, PT, PhD

Background and Purpose—Outcome after first stroke varies significantly across Europe. This study was designed to compare motor and functional recovery after stroke between four European rehabilitation centers.

Methods—Consecutive stroke patients (532 patients) were recruited. They were assessed on admission and at 2, 4, and 6 months after stroke with the Barthel Index, Rivermead Motor Assessment of Gross Function, Rivermead Motor Assessment of Leg/Trunk, Rivermead Motor Assessment of Arm, and Nottingham Extended Activities of Daily Living (except on admission). Data were analyzed using random effects ordinal logistic models adjusting for case-mix and multiple testing.

Results—Patients in the UK center were more likely to stay in lower Rivermead Motor Assessment of Gross Function classes compared with patients in the German center (ΔOR, 2.4; 95% CI, 1.3 to 4.3). In the Swiss center, patients were less likely to stay in lower Nottingham Extended Activities of Daily Living classes compared with patients in the UK center (ΔOR, 0.7; 95% CI, 0.5 to 0.9). The latter were less likely to stay in lower Barthel Index classes compared with the patients in the German center (ΔOR, 0.6; 95%CI, 0.4 to 0.8). Recovery patterns of Rivermead Motor Assessment of Leg/Trunk and Rivermead Motor Assessment of Arm were not significantly different between centers.

Conclusions—Gross motor and functional recovery were better in the German and Swiss centers compared with the UK center, respectively. Personal self-care recovery was better in the UK compared with the German center. Previous studies in the same centers indicated that German and Swiss patients received more therapy per day. This was not the result of more staff but of a more efficient use of human resources. This study indicates potential for improving rehabilitation outcomes in the UK and Belgian centers. (Stroke. 2007;38:2101-2107.)

Actions

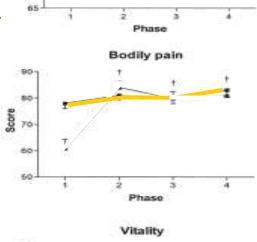
- Quantify the volume of services
- Appropriate resources
- Outcome measurements for effectiveness

Cost-effective model

Meta-analysis of Cardiac Rehabilitation Service (2005)

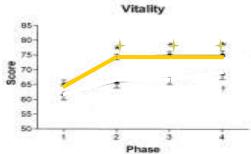
- reduced recurrent MI by 17% at a median of 12 months;
- mortality benefit became apparent with longer follow-up: 15% overall and 47% at 2 years.
- showed that survival benefit was similar in recently published trials to those of over 2 decades earlier

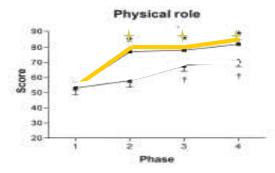
Clark AM, Hartling L, et al.. Ann Intern Med 2005;143:659 -72.

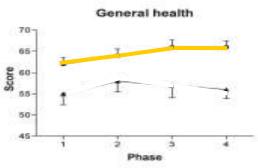

Cost-effectiveness of cardiac rehabilitation

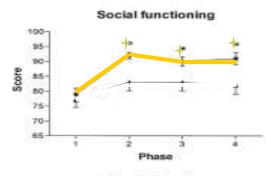
Short Course of Cardiac Rehabilitation Program is highly cost-effective in improving long-term Quality of Life with recent myocardial infarction or Percutaneous Coronary Angioplasty. *Archives of Physical Medicine and Rehabilitation*, , Vol 85 (12), 1915-1922, 2004 Dec.

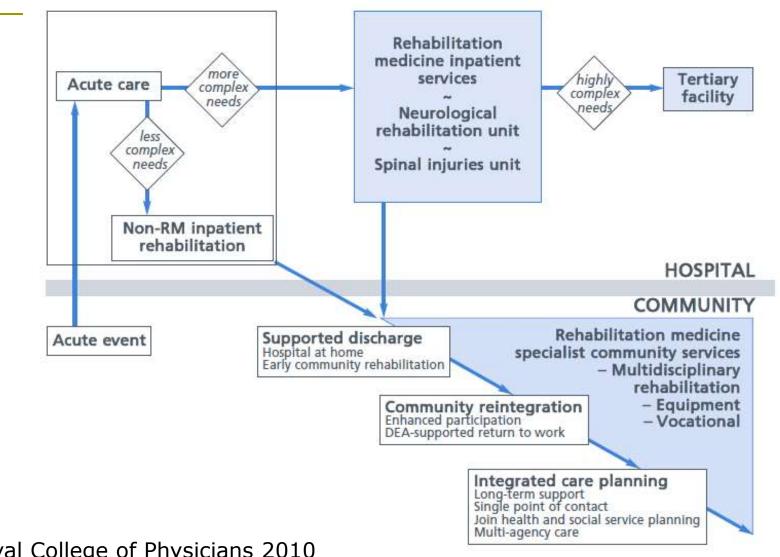
SF36


Arch Phys Med Rehabil, Vol 85 (12), 1915-1922. 2004 Dec.


80 80 75

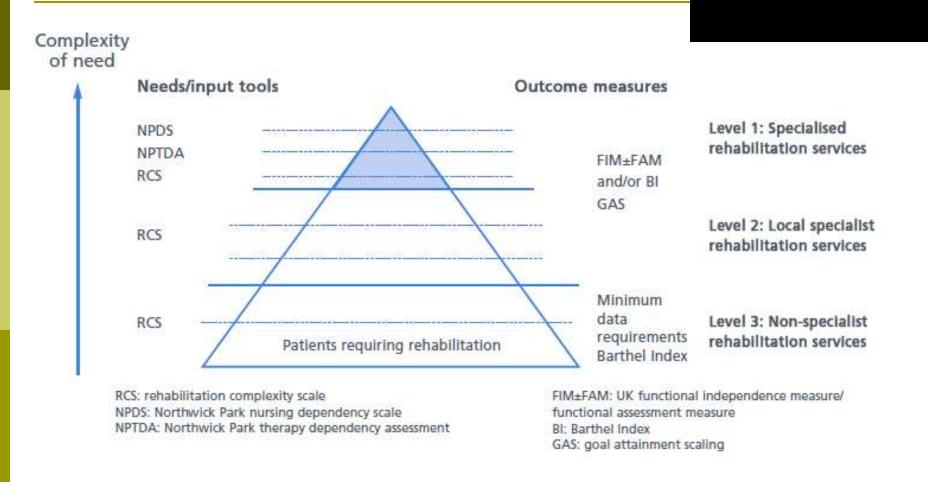

70-


Physical functioning



Treatment

__ Control


	ltem	CRPP Group (US\$)	Control Group (US\$)
Mean cost of	Staff salary	776.6	415.0
medical	Equipment	4.6	0.0
expenditure per	Hospitalizations	3553.6	2747.0
	Investigations		
<u>patient</u>	Coronary angiogram	871.8	1025.6
QALY = 0.6	Echocardiog raphy	448.7	448.7
	Holter	118.6	118.6
Incremental cost = -	Exercise test	553.8	553.8
\$416	Electrocardiogram	140.4	140.4
6	Blood tests	1013.1	1013.1
Cost-utility ratio =	Chest radiogram	48.7	48.7
- \$650 per QALY	Revascularization procedures		
gained per patient	PCI	4885.0	6481.2
	CABS	256.4	205.1
	Private clinic visits	82.0	53.5
	Public cardiac clinic visits	425.3	435.2
	Public noncardiac clinic visits	146.3	155.0
Arch Phys Mod Pobobil	Casualty visits	27.4	30.0
<i>Arch Phys Med Rehabil ,</i> Vol 85 (12), 1915-1922. 2004	Drugs	1939.6	1836.5
Dec.	Mean total costs per patient	15,291.9	15,707.4

Clinical Pathway

Royal College of Physicians 2010

Level of Complexity of Rehabilitation Services

Analysis 01.01. Comparison 01 Electromechanical and robotic assisted gait training plus physiotherapy versus physiotherapy (or usual care), Outcome 01 Independent walking at the end of intervention phase, all electromechanical devices used

Review: Electromechanical-assisted training for walking after stroke

Comparison: 01 Electromechanical and robotic assisted gait training plus physiotherapy versus physiotherapy (or usual care)

Outcome: 01 Independent walking at the end of intervention phase, all electromechanical devices used

Study	Treatment n/N	Control n/N	Odds Ratio (Fixed) 95% CI	Weight (%)	Odds Ratio (Fixed) 95% CI
× Días 2006	20/20	20/20		0.0	Not estimable
× Husemann 2007	0/17	0/15		0.0	Not estimable
Peurala 2005	14/30	9/15	-	35.0	0.58 [0.17, 2.05]
Pohl 2007	41/77	17/78	_	43.2	4.09 [2.03, 8.23]
Saltuari 2004	1/8	1/8	•	4.8	1.00 [0.05, 19.36]
Schwartz 2006	11/28	1/18		4.0	11.00 [1.28, 94.88]
Tong 2006	14/30	3/20		10.5	4.96 [1.20, 20.55]
Werner 2002	1/15	0/15		2.5	3.21 [0.12, 85.20]
Total (95% CI)	225	189	-	0,001	3.06 [1.85, 5.06]
Total events; 102 (Treatme	nt), 51 (Control)				
Test for heterogeneity chi-	square=9.67 df=5 p=0.0	08 I ² =48,3%			

0.1 0.2 0.5 1 2 5 10

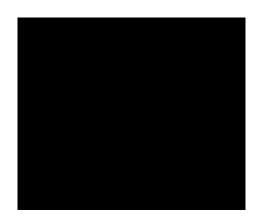
Favours control Favours treatment

Electromechanical-assisted training for walking after stroke (Review)

Test for overall effect z=4.37 p=0.00001

Electromechanical Gait Trainer

Methotze et al. Cochrane Library, 2007, issue 4


Robotic Training

• Repetitive and Task-specific training

Technology in Rehabilitation

Motor Recovery after Stroke

Intervention or subcategory	Trials (number of participants)	SMD of outcome scale (95% CI)
Arm function		
Neurophysiological approaches ⁷⁴⁻⁷⁶	6 (248)	-
Bilateral training ^{29,30}	2 (111)	_
CIMT48-5943-70	21 (508)	
EMG blofeedback/1-74	4 (126)	-
Electrostimulation ⁹⁰⁻¹⁰⁰	13 (277)	-
High-intensity therapy 126-127	6 (571)	-
Mental practice ¹⁽³¹⁻¹⁾⁴	4 (72)	-
Repetitive task training 25,27,124,138-142	8 (414)	
Robotics ¹⁵⁰⁻¹⁵⁹	10 (255)	
Splinting or orthosis ¹⁶¹⁻¹⁶³ ‡	4 (105)	-
Hand function		
Neurophysiological approaches ^{74,75,77}	3 (157)	-
Bilateral training ³⁰	1(99)	12 1
CIMT#850555660-42646569	10 (263)	
Electrostimulation ^{95-98,100-104}	5 (71)	
High-intensity therapy ^{125,127} 5	4 (403)	-
Repetitive task training 25,27,138-140	5 (281)	-
Robotics ^{15A,15A,15A-157,159}	7 (150)	
Splinting or orthosis ^{161,163}	2 (43)	77 <u></u>
	100000	
	-4	-2 0 2
	F	avours control Favours treatment

Figure 2: Interventions to Improve upper-limb motor recovery after stroke

Langhorne P et al. Lancet Neruol 2009:8:441-54

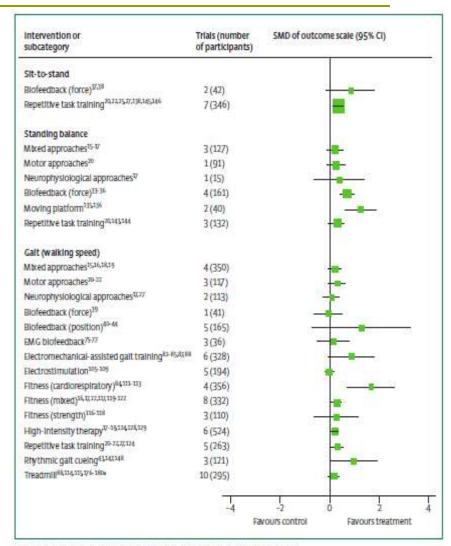
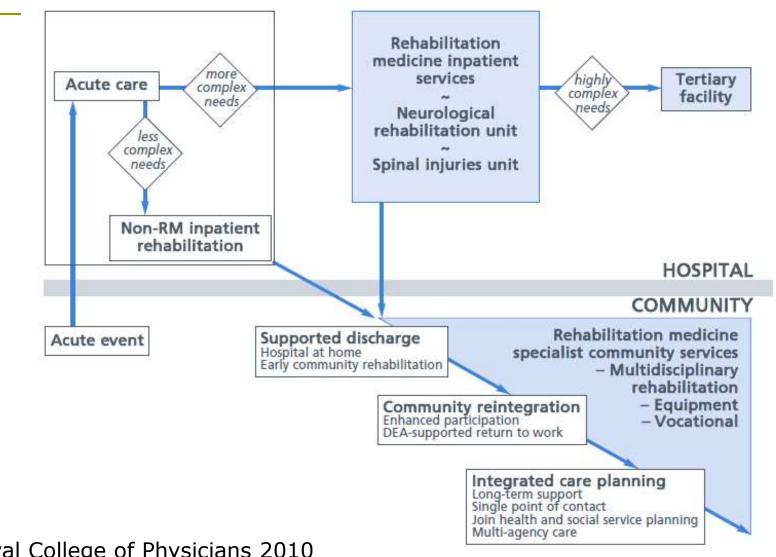
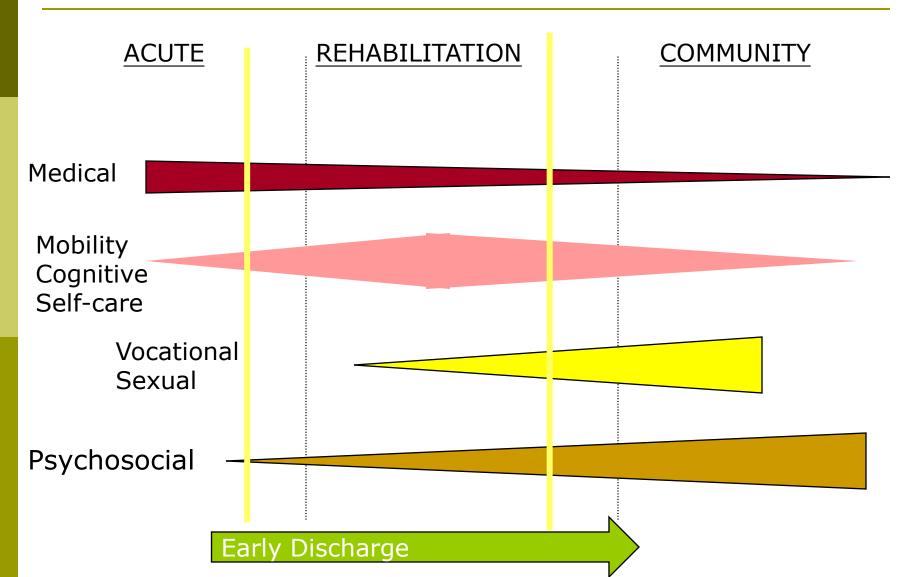



Figure 3: Interventions to Improve balance, gait, or mobility after stroke

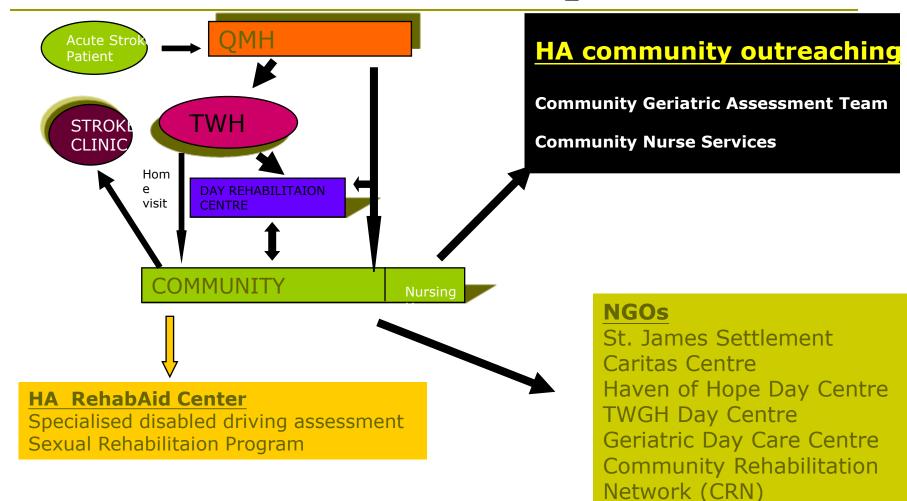
Clinical Pathway



Royal College of Physicians 2010

Interface and Triage: What is the optimal in HK?

- Acute to Rehabilitation
 - Inpatient
 - Day patient
- Inpatient to Community
 - Day patient
 - Home rehabilitation
 - NGOs
 - Satellite centres


Phases of Neurological Care

Early Supported Discharge Trials

		Length of stay	(LOS)	Institu	tional care	Readmission rates			
	Number subjects	of Conventional	ESD	% reduction LOS	Conventional care(%)	ESD(%)	Conventional care(%)	ESD(%)	
London	331	32	25	22	15	8	26	26	
Newcastle	92	22	13	41	12	7	12	11	
Stockholm	83	29	14	52			10	10	
Akershus	251	38	10	74	11	13			
Adelaide	86	30	15	50	11	5	27	36	
Montreal	114	16	10	38					
Oslo	82	31	22	29					

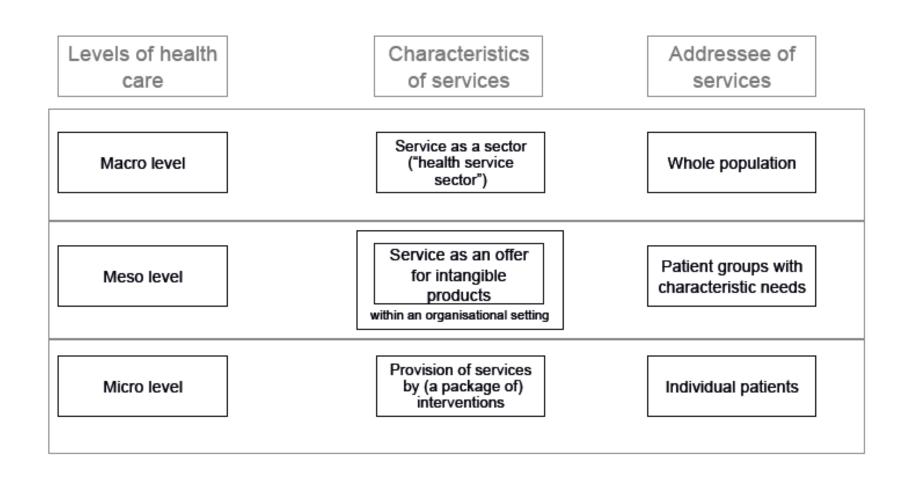
Community Rehabilitation and Services outside the hospital

Patient Self-help Groups

Haven of Hope Day Rehabilitation Centre

Rehabilitation Network: Self Management Programme

Seif-Support Group: Outdoor Activities


Interface and Triage: What is the optimal in HK?

- Acute to Rehabilitation
 - Inpatient
 - Day patient
- Inpatient to Community
 - Day patient
 - Home rehabilitation
 - NGOs
 - Satellite centres?

- 1. Communication case manager
- 2. Quantification of service bed allocation

- 1. Communication-case manager
- 2. Macro resource allocation
- 3. Cost-effective evaluation

Conceptual Description of Rehabilitation-related Services

Myer T., Grutenbrunner C. et al. J Rehabil Med 2014; 46:1-6

Summary

Micro	Individual patient	 Scopes of intervention Credentialing of service providers Staff training Appropriate resources: staff and facilities Outcome assessment
Meso	Patient groups	 Level of specialization needed Traige, interface (patient journey)
Macro	Whole population	 Public vs Private Resource allocation Community linkage

