Robot-assisted Navigation System for CT-guided Percutaneous Lung Lesions Procedures

Chu CM(1)(2), Yu JWL (1)(2), Yu SCH(2)(1)

(1) Department of Imaging and Interventional Radiology, Prince of Wales Hospital (2) Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong

Keywords:
- Interventional Radiology
- CT guided procedure
- Lung
- Percutaneous
- Oncology
- Localisation

Introduction

BACKGROUND: Imaging-guided lung procedures are usually challenging due to patient breathing, especially during local anaesthesia procedures. This was a prospective study in a university-based hospital. This was an assessment of efficacy involving total 83 patients with lung lesions undergoing CT-guided percutaneous lung interventions utilizing Robot-assisted Navigation system (Maxio, Perfint Healthcare, USA).

Objectives

PURPOSE: To evaluate the new Robot-assisted Navigation System for CT-guided percutaneous lung lesions procedures

Methodology

MATERIALS AND METHODS: All the procedures were performed under local anaesthesia. Targeted needle pathway was planned on Maxio Robotic system based on pre-procedural CT-scans. Primary endpoint was satisfactory instrument position for intended intervention. Lesion size and depth from skin were noted. Performance level was documented on a five-point scale (5: excellent-poor). Total radiation doses were recorded and compared against 20 patients with conventional CT-guidance and CT-fluoroscopy lung procedures (ratio 1:1).
RESULTS: There were 56 males and 27 females patients in Robotic group. Average age was 66.4 years (range 38-85). 78 patients underwent lung biopsy while rest had thermal ablation, fiducial-marker insertion or drainage. Average lesion size was 3.0cm (range 0.8-7.8cm). Average lesion depth was 5.6cm (range 2.8-9.5cm). All interventions met primary endpoint of satisfactory instrument positioning. There are 6 cases required a second planning for targeted needle pathway as these patients cannot achieve the same breath holding during the procedures. 1 case required a third planning due to the same reason. Average performance levels were 4.71. Average radiation dose (Dose Linear Product) was 446.1mGycm (range 83.7-2012.7) whereas conventional CT-guidance was 645.4mGycm (range 285.1-1043.5) and CT-fluoroscopy was 460.1mGycm (range 214.2-1157.0). There are 37 cases complicated with minimal to small pneumothorax while only 10 cases needed chest drain insertion. CONCLUSIONS: Our experience demonstrated effectiveness of Robot-assisted Navigation system for CT-guided lung lesions interventions with lower radiation dose compared with conventional CT-guided procedures. Radiation doses were similar to CT-fluoroscopy without radiation exposure to interventional radiologists. Targeting success rate for satisfactory intervention was 100%.