Current threats to the attainment of SAL within a CSSD: A CSSD managers point of view

Prof. Duygu PERÇİN, MD
Vice-president of DAS, Turkey
Department of Clinical Microbiology
Erciyes University Faculty of Medicine, Kayseri, TURKEY
duygu.percin@hotmail.com

Where is the idea coming from?

- Unfortunately it is coming from the real life situations:
 - Study for prolongation of shelf life of sterile packs in orthopedic hospital in Slovenia
 - Outbreak of surgical site infections due to inadequate sterilization in Turkey

Slovenian case

- Design qualification study to extend shelf life of sterile packs
- It was aimed to confirm sterility after one year or redesign the pack to prolong the shelf life
- Composition of the pack
 - Critical quantity of orthopedic surgical instruments (10kg metal instruments)

Simulation

- The instruments, which were cleaned but not used for a long time, were selected and used as a challenge pack
- Instruments were put in a metal tray
- The set was double wrapped
 - inner wrap: 60 gr non woven
 - outer wrap: 50 gr SMS

Sterilization and transfer of packs

- Simulation pack was sterilized in 134°C for 7 min with validated steam sterilizer (MMM, 2012)
- After sterilization, packs were put into dust covers and plastic transport boxes, sealed and transported to National Institute of Public Health in Slovenia for accelerated ageing and microbiological testing.

Accelerated ageing and results

- Packs were sprayed for 3 weeks repeatedly with solution of *Bacillus subtilis* and kept at 56°C for ageing
- For microbiologic analyses, instruments were immersed completely into broth
- There was growth!
- Confusion???
 - Growing bacteria was not B. subtilis!

Conclusions of this study

- Theoretical SAL was the same of 3.5 hours in 121°C
- Packs were not recontaminated but they were not sterile!
- Even overkill cycle of 7 min was not enough
- There is a need for a microbiological study to prove sterilization efficacy!

Turkish experience

An outbreak in a surgical intensive care unit <u>due to</u> <u>inadequate sterilization</u>

Evaluation of outbreak

- A case of polymicrobial ventriculitis
- An outbreak of Serratia
 marcescens mediastinitis
 in the intensive care unit of
 cardiovascular surgery
- 5 of 17 patients died

Molecular analysis of the strains

Figure I Plasmid profiles of nine S. marcescens isolates. MWM, molecular weight marker. I-8, isolates from eight different patients (patient nos: I, 2, 3, 4, 5, 7, II, I3) (Table I); 9, isolate from sterilized drape (set no: 5).

Duygu Esel (Percin), et al. J Hosp Infect 2002, 50 (3): 170-4

In both cases:

There was something wrong with sterilization efficacy

The aims of present study

- To question the reason for low sterilization efficacy
- To evaluate if SAL theory is adequate enough to describe sterilization efficacy
- To evaluate the need for alternative methods, for evaluating efficacy of sterilization procedures

"STERILE" medical device

- For a terminally-sterilized medical device to be designated "STERILE"
 - the theoretical probability of there being a viable micro-organism present on/in the device must be equal to or less than 1x10-6
- Sterility assurance level (SAL)

SAL concept

- Based on the assumption that the inactivation of microorganisms by physical or chemical means follows first-order kinetics
- Not based on scientifically proven data, but is only a rule of approximate values

Elimination of microorganisms

- A time-dependent process
- Influenced by
 - the intensity of treatment
 - the initial microbial contamination level
- Effect of some risks in CSSD
 - non condensable gases
 - improper cleaning
 - excessive condensate

Efficacy of sterilization of specific cycle (F) is represented with a surface under temperature line

We can see that 20min at 121°C has the same impact on microorganisms as one minute at 134 °C

121 °C

1 min

STERILIZATION EFFICACY AT 134°C; WHAT IS GOING ON?

In fact we are prolonging sterilization cycles to be sure to achieve SAL 10⁻⁶

BUT...

ARE WE ALSO INCREASING OUR MISTAKES WITH IT ???

We all know what improper cleaning is; also we heard about Non Condensable Gases, but what is **Excessive Condensate**?

Excessive condensate (1)

- At steam sterilization cycle, we have to heat up our surgical instruments to 134°C to achieve sufficient sterilization
- To achieve this we are using condensation
- During condensation saturated steam is transformed into condensate
- The heavier our sterilization packs are, the more condensate we are generating at heating up

Excessive condensate (2)

- For every kilogram of metal we are generating a couple of deciliters of condensate
- If this condensate is trapped into sterilization pack it does not gain temperature as fast as metal surfaces in the load
- It means that preset temperature of sterilization cycle is reached much slower in condensate than on exposed surfaces

Effect of excessive condensate on sterilization efficacy

Difference in F value

Condensate (green)

Without condensate

(red)

Up to:

-60%

...at short cycles

Materials and methods

- Preparation of Geobacillus stearothermophilus (ATCC 7953) spores from 10⁵ to 10⁹
- Inoculation of screws
- Steam sterilization
- Device for generation of condensate
- Culture and incubation
- Microbiological results
- Electron microscopic evaluation

Correlation: Testing device vs. Real life instruments

Similar shape and size

Screws screw washer **Spore inoculation** nut

Steam sterilization aparatus and cycle

Steam sterilizerGetinge Ge336c

Validated cycle

- -Temperature 135,5°C
- -3 transatmospheric pulses for air removal
- -Different holding times
- -Short vacuum drying time

Results

- Microbiologic results
 - Step 1-5

- Microscopic results
 - Gram staining
 - Scanning Electron Microscopy

STEP 1: Results of screws inoculated with 10⁹ spores

Sterilization time	Sample size	Cycle (134°C)	Growth
3 min	6	correct	+
	6	condensate	+
4 min	6	correct	+
	6	condensate	+
5 min	6	correct	+
	6	condensate	+

STEP 2: Results from screws with less load and metal plates (2cm²)

Sterilization time	Cycle (134°C)	Sample size / type / load	Growth
3 min	Correct	6 / Screws / 10 ⁶	No
	Condensate	6 / Screws / 10 ⁶	No
3 min	Correct	2 / Screws / 10 ⁷	No
	Condensate	4 / Screws / 10 ⁷	No
4 min	Condensate	4 / Screws / 10 ⁷	No
3 min	Correct	6 / Plates / 10 ⁶	No
	Condensate	6 / Plates / 10 ⁶	No

STEP 3: Effect of condensation and sterilization time on screws carrying 10⁹ spores

Sterilization time	Cycle (134°C)	Growth
7 min	Correct	No
	Condensate	Growth +
10 min	Correct	No
	Condensate	Growth +
18 min	Correct	No
	Condensate	Growth +

STERILIZATION EFFICACY AT 134°C; WHAT IS GOING ON?

134 °C

Temperature

121 °C

EVEN IF WE PROLONG THE **CYCLE WE ALSO INCREASE OUR MISTAKES TOGETHER** WITH IT

STEP 4: Effect of inoculum

(sterilization in 134°C for 3 min)

Inoculum	Cycle		Result	
		24 h	48 h	72 h
10 ⁵ -10 ⁶ -10 ⁷	Correct	No	No	No
	Condensate	No	No	No
10 ⁸	Correct	No	No	No
	Condensate	No	No	Yes
10 ⁹	Correct	No	Yes	Yes
	Condensate	Yes	Yes	Yes

108
without condensate

No growth

Photo by Duygu Perçin

2 µm*

 $WD = 8.5 \, mm$

Mag = 6.37 K X

Date :26 Sep 2013

Time:16:30:53

10⁹

condensate

EHT = 20.55 kV WD = 10.0 mm Signal A = VPSE G3

Mag = 12.51 K X

Date :30 Sep 2013

Time:10:16:27

10⁹

without condensate

2 µm*

EHT = 20.55 kV WD = 10.0 mm Signal A = VPSE G3

Mag = 12.51 K X

Date :30 Sep 2013

Time: 10:37:41

108 condensate

3 μm*

EHT = 17.95 kV WD = 10.0 mm Signal A = VPSE G3

Mag = 9.89 K X

Date :27 Sep 2013

Time:14:34:19

Mag = 10.00 K X EHT = 20.00 kV Detector = SE1
Date :22 Oct 2013

STEP 5: Effect of sample type and sterilization time

Sterilization time	Sample type 10 ⁹	Cycle (134°C)	Growth
3 min	Nuts only	Correct	Growth +
		Condensate	Growth +
3 min	Screws	Correct	Growth +
		Condensate	Growth +
4 min Nuts only		Correct	No
		Condensate	No
4 min	Screws	Correct	No
		Condensate	Growth +

Reduction at 134 °C

If instruments with difficult structure are immersed in condensate, it seems that we are unable to sterilize them if bioburden is higher than 108

Conclusions

- Inoculum has a big effect on sterilization efficacy
 - impresses the importance of cleaning
- Condensation lowers the sterilization efficacy
 - impresses the importance of proper loading of packs and sterilizer
- Instrument shape has a big impact on sterilization efficacy
 - impresses the importance of challenging structure of instruments and packaging

Today's sterilizers

- Time based
- Simple
- They use overkill aproach
 - Different conditions inside the load are not monitored
 - Phenomenas as excessive condensate are not recognized

Good example already in use at present

Liquid sterilizers with probe (time based)

- the sterilization phase begins when the "coldest" heat probe has entered the acceptable range
- If the oscillations are in the acceptable oscillation range, the sterilization phase ends 20 minutes after the "coldest" heat probe has entered the range

Future solutions

- Move from time-based steam sterilizers to F_{value} based ones
 - Autoclaves integrated with a real-time F calculation function
 - Electronic indicators that are able to communicate with sterilizer with capability of calculating F_{value} real-time in the package and noticing threads for sterilization like NCG, excessive condensate, etc.

Electronic indicator usage

Synthesis

- Microorganisms do not follow first-order kinetics when they die!
- In case of immersion in excessive condensate it is not possible to reach the preset values during sterilization!
- We should follow empirical results of detailed studies related to inactivation of microorganisms.
- We must stay away from mathematical models when sterilization is the subject, at the time being...
- Or we must teach mathematics to microorganisms or to our sterilizers!

Special thanks

Peter Kozin, Slovenia

Wim Renders, Belgium

 ERNAM (Erciyes University Nanotechnology Research Center)

THANK YOU!