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*The above chart only cover general acute hospitals with 24 hour A&E services.



| | objective

Predict the surge in admission

Before it happens

|

Alert §

| Time lag to implement
response plan

Proactive Measures
(e.g. scale down non-urgent services,
add temporary beds and deploy staff) > Ko

2




Model
Methodology




Methodology

To predict the number of emergency admissions
to medical ward in 1 week ahead

Hospital Hong Kong Environmental

Authority Observatory Protection

Department
- - —

ﬁ = E efc

Records in Clinical Temperature, Air pollution index
Mgnagemenf relative humidify,

System (CMS) air pressure,
cold/hot weather warning,
efc.

\\& ! To establish

Statistical model an alert signal

(Co-integrated time-series :> fhrough empiri.ccﬂ
regression model) data analysis |




Training dataset

207 weeks’ data in
2008 to 2011

Model
building

2012 & 2013

Model
validation

Statistical model
(Co-integrated

time-series

regression model

@

Validation dataset

104 weeks’ datfa in

Model
predictive
performance
monitoring




I Model Results I




The Co-integrated Time-series Regression
Model

Every week Predictors

predicts ( |

%Respiratory

ward :
! . illness at
this week GOPC.

next week
last wee

Emergency

admissions Emergency iliness at GOPC,

to medical — % admpsmns to % this week % Temperature,
— medical ward, Y%Respiratory Er———

When relativity > 1,  in quadratic
admissions 1 relationship

When relativity < 1,
admissions |

increasing positively
trend associated

holding other factors constant
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4 Predictors of Next Week’s Emergency
Medical Admissions

(1) Trend ‘Jlb

the admission number has increased by
6% per annum over the past 6 years on average

Weekly no. of Emergency Admissions to Medical Ward

”\/,.nM %

i

4000 : : : : : :
Jan 2008 Jan 2009 Jan 2010 Jan 2011 Jan 2012 Jan 2013 Jan 2014




4 Predictors of Next Week’s Emergency
Medical Admissions

(2) Number of emergency admissions to
medical ward this week

the weekly emergency medical admissions
depends on its preceding week’s value

i.e. a strong autocorrleation between week; and week;,,; data




4 Predictors of Next Week’s Emergency
Medical Admissions

(3) % Respiratory illness at General Outpatient Clinic

/TOTO| GOP 100% \

episodic 8o T emergency
atfendances o, medical

40% Serespiratory admissions
20% | FARSISIE Rl ness* next week

illness*
0%
\ Last week This week /

(” Total GOP 100% N

episodic gy, l emergency

attendances 0% medical

40% admissions
20% Zrespiratory : next week

illness* ofESpIrarory

0% illIness*
\ Last week  This week

* Based on International Classification of Primary Care-2 (ICPC) codes: R72, R74-R78, R80, R81 and R83



4 Predictors of Next Week’s Emergency

Medical Admissions

(4)Temperature

|  Temperature
this week

Emergency
medical

admissions
next week
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I . Alert Signals

Two signals (on relative and absolute
basis) will be triggered:

when the predicted number of emergency
medical admissions in next week...

increases by 5% or more
(vs the prior week’s)
exceeds the

A
&b | ihreshold of 6,000
admissions per week




Model Validation
& Predictive
Performance




Model Validation in 2012 and 2013

/Predicﬁve Performance

Year 2012 2013
Total no. of weeks 52 52
No. of weeks with the actual value falling 0 0
within 95% prediction interval 47 (90%) 49 (94%)
No. of weeks with predicted mean value being
+5% deviation from the actual value

— Actual weekly no.

Predicted mean weekly no.

95% upper prediction limit
95% lower prediction limit

37 (71%) 46 (88%)
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H 2012
—H 2013 -
7~H 2013 1

FaH 2012
HH 2012 -
7~H 2012 4
- H 2012 1
JAH 2012 4
JLH 2012 4
+H 2012 -
gH 2013
HH 2013 4
+H 2013 1
JAH 2013 -
JLH 2013 -
+H 2013 -
+—H 2013 -
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I. Model Predictive Performance

The “relative” alert signal i was first friggered
as early as late November 2013
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I. Model Predictive Performance

The “relative” signal i is sensitive to alert the
surges ahead

— Actual weekly no.
gs®ldé " . Prediction mean weekly no.
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Application
& Way Forward




Through triggering an early alert signal, this Model can
facilitate HA to implement response measures to cope
with surge in service demand

-
Application I

What's the next best action?

To defer elective admission in medical,
surgical and other wards

To add temporary beds




Il Way Forward

Implement and Promulgate

the model & alert signals
across HA through
the Task Force of Winter Surge
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