Prospects for Future Health and Health Care Spending Among the Elderly

Jay Bhattacharya, MD, PhD

for Dana Goldman and the RAND group on medical care expenditure forecasting
Medicare is central to the U.S. health policy debate

- Largest insurer by far
- Spent US$300 billion in 2005
- Accounts for almost 20% of all medical spending
- 13% of government spending

We need to know what Medicare’s future looks like
Standard Forecasting Approach

Contains assumptions about prices, treatment, medical technology

Number of people \times \text{Amount each person spends} = \text{Total spending}
Standard Forecasting Approach

Contains assumptions about prices, treatment, medical technology

Number of people × Amount each person spends = Total spending
Government Does a Good Job Forecasting the Number of Medicare Beneficiaries…

Beneficiaries (in thousands)

Year

High estimate in 1983
Low estimate in 1983
Actual
Standard Forecasting Approach

Contains assumptions about prices, treatment, **medical technology**

\[\text{Number of people} \times \text{Amount each person spends} = \text{Total spending} \]
...But Not Medicare Spending

Medicare Part A spending (hospital insurance)

Year

Billions of dollars (2005)

High estimate 1980

Low estimate 1980
...But Not Medicare Spending

Medicare Part A spending (hospital insurance)

Billions of dollars (2005)

Year

Actual

High estimate 1980

Low estimate 1980
...But Not Medicare Spending

Medicare Part A spending (hospital insurance)

Year

Billions of dollars (2005)

High estimate 1980
Low estimate 1980
Actual

Actual
High estimate 1980
Low estimate 1980
...But Not Medicare Spending

Medicare Part A spending (hospital insurance)

- **Actual**
- **High estimate 1980**
- **Low estimate 1980**

Billions of dollars (2005)

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>High estimate 1980</th>
<th>Low estimate 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Explains the Increase in Total Medical Spending over the Last Fifty Years?
What Explains the Increase in Total Medical Spending over the Last Fifty Years?

Aging
What Explains the Increase in Total Medical Spending over the Last Fifty Years?

- Aging
- Income
What Explains the Increase in Total Medical Spending over the Last Fifty Years?

- Aging
- Income
- Insurance
What Explains the Increase in Total Medical Spending over the Last Fifty Years?

- Aging
- Income
- Insurance
- Prices
What Explains the Increase in Total Medical Spending over the Last Fifty Years?

- Technology
- Income
- Aging
- Insurance
- Prices
The Problem Is Understanding the Effects of Medical Technology

The Left Ventricular Assist Device
Is There a Better Way to Forecast Total Medical Spending?

- Centers for Medicare and Medicaid Services requested this study
- Goal: Open the “black-box” of future medical technology
- Focus on the elderly
Our Approach

• Identify emerging technologies

• Build demographic-economic model

• Simulate effects of technology on:
 – Spending
 – Functional status
 – Disease
Identified Emerging Technologies Using Methods Pioneered at RAND and UCLA

• Step 1: Reviewed vast literature on emerging technologies
 – Devices, drugs, treatments, clinical practices
 – 21,400 articles screened

• Step 2: Convened panels of private sector and academic experts
 – Cardiovascular disease
 – Neurological disorders
 – Cancer / biology of aging
 – Geriatricians and social scientists

• Identified 34 key emerging technologies
Example: Intraventricular Defibrillators

Used to treat patients with life-threatening arrhythmias: shocks heart to restore natural rhythm.

Target:
- 50% of patients with heart failure
- 50% of patients post heart attack
- 20% of patients with cardiomyopathy

Likelihood:
- 30% in 10 yrs
- 30-40% in 20 yrs

Impact:
- No effect on hospitalizations
- Life expectancy increases 6-10 months

Cost: $35,000 - $40,000 per case

~3.5 million in 2004
Our Approach

• Identify emerging technologies

• Build demographic-economic model

• Simulate effects of technology on:
 – Spending
 – Functional status
 – Disease
Our Model Tracks **Individuals Over Time**

- **100,000 Medicare beneficiaries (age 65+) in 2005**
 - Survivors → Health & functional status, 2006
 - Deceased → 2005 costs

- **New 65 year-olds in 2006**
 - Survivors → Health & functional status 2007
 - Deceased → 2006 costs

- **New 65 year-olds in 2007**
 - Survivors → Etc.
 - Deceased → 2007 costs
Our Forecast of Population Growth Matches Vital Statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Census</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>70.8 M</td>
<td>70.3 M</td>
</tr>
</tbody>
</table>
Predicted Prevalence of Disease in the Medicare Population

Year

% of +65 population

Heart
Disability
Diabetes
Lung
Stroke

A6654C-25 3/06

RAND
Forecast of Real Health Care Spending by Elderly

Assumes no change in technology
Our Approach

• Identify emerging technologies

• Build demographic-economic model

• Simulate effects of technology on:
 – Spending
 – Functional status
 – Disease
Our Panel Predicted a Dramatic Expansion of ICD Use

Number of procedures

Year

0 100,000 200,000 300,000 400,000 500,000 600,000
2005 2010 2015 2020 2025 2030

550,000
Our Panel Predicted a Dramatic Expansion of ICD Use

Number of procedures

Year

2005
2010
2015
2020
2025
2030

550,000

550,000 x $35,000 = ~$19B
Will Add About $30 Billion Annually to Health Spending in Steady State

Total health care spending by elderly

- Current medical practice
- With ICD expansion

Billions of dollars (2005)

Year

800 B 830 B
But Will Not Substantially Improve Functional Status of Elderly Population

% of elderly with any functional impairment

- Current medical practice
- With ICD expansion
We Evaluated the Technologies Most Likely to Enter Clinical Practice

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase in medical spending* (%)</th>
<th>Cost per additional life-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantable cardio-defibrillators</td>
<td>3.7</td>
<td>103,000</td>
</tr>
</tbody>
</table>

*Increase in 2030 health care spending relative to status quo without the technology.
Technology Will Put Substantial Pressure on Medical Spending by the Elderly

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase in medical spending* (%)</th>
<th>Cost per additional life-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-aging compound (healthy)</td>
<td>13.8</td>
<td>9,000</td>
</tr>
<tr>
<td>Cancer vaccines</td>
<td>0.4</td>
<td>18,000</td>
</tr>
<tr>
<td>Treatment of acute stroke</td>
<td>0.4</td>
<td>22,000</td>
</tr>
<tr>
<td>Anti-aging compound (unhealthy)</td>
<td>70.4</td>
<td>30,000</td>
</tr>
<tr>
<td>Telomerase inhibitors (cancer)</td>
<td>0.5</td>
<td>62,000</td>
</tr>
<tr>
<td>Implantable cardio-defibrillators</td>
<td>3.7</td>
<td>103,000</td>
</tr>
<tr>
<td>Antiangiogenesis (cancer)</td>
<td>8.0</td>
<td>500,000</td>
</tr>
<tr>
<td>Left ventricular assist devices</td>
<td>2.3</td>
<td>500,000</td>
</tr>
<tr>
<td>Pacemaker for atrial fibrillation</td>
<td>2.3</td>
<td>1,400,000</td>
</tr>
</tbody>
</table>

*Increase in 2030 health care spending relative to status quo without the technology.
No Magic Bullet for Medicare

• Much attention has been focused on the emerging demographic crisis

• But medical technology is perhaps more important
 – Just one technology could increase elderly health care spending by 14% to 70% annually
 – But it could also generate substantial social value

• Our model makes the tradeoffs explicit
What Can We Do About Technology?

• “Upstream” rationing
 – Only allow cost-effective treatments into practice
 – Britain, Australia are examples
 – No precedent in U.S. system

• “Downstream” rationing
 – Markets (prices) determine who gets services
 – Insurers play a key role
 – Source of contention in HMOs
 – Medicare not even allowed to consider costs when making coverage decisions

• Policy alternatives
 – Let Medicare explicitly take costs into consideration
 – Change the R&D incentives
 – Buy out innovators
Disseminating this Research

- Subject of special issue of *Health Affairs*
- Featured at an Alliance for Health Reform forum in Washington D.C.
- Extensive media coverage, including featured story in the Money section of USA Today
- Key component of NIH-funded conference on biomedical research, attended by NIH Director and heads of many of the Institutes
- Technical advisors to the Medicare Trustees recommended they consider adopting this approach
What’s Next?

• Expanding the model to add younger cohorts
 – Funded by a 5-year grant from National Institute on Aging

• Developing a version for Europe
 – Funded by Pfizer